
ParaView Users Guide Documentation
Release 5.8.1

ParaView Developers

May 21, 2021

PARAVIEW USER’S GUIDE

1 Paraview User’s Guide 3
1.1 Introduction to ParaView . 3
1.2 Loading Data . 20
1.3 Understanding Data . 30
1.4 Displaying data . 44
1.5 Filtering Data . 78
1.6 Selecting Data . 116
1.7 Animation . 128
1.8 Saving Results . 134

2 Paraview Reference Manual 149
2.1 Properties Panel . 149
2.2 Color maps and transfer functions . 151
2.3 Comparative visualization . 170
2.4 Programmable Filter . 173
2.5 Using NumPy for processing data . 188
2.6 Remote and parallel visualization . 197
2.7 Memory Inspector . 220
2.8 Multiblock Inspector . 224
2.9 Annotations . 227
2.10 Axes Grid . 234
2.11 Customizing ParaView . 239

3 References 251

Bibliography 253

i

ii

ParaView Users Guide Documentation, Release 5.8.1

This guide can be split into two volumes. The User’s Guide covers various aspects of data analysis and visualization
with ParaView.

Reference Manual provides details on various components in the UI and the scripting API.

PARAVIEW USER’S GUIDE 1

ParaView Users Guide Documentation, Release 5.8.1

2 PARAVIEW USER’S GUIDE

CHAPTER

ONE

PARAVIEW USER’S GUIDE

1.1 Introduction to ParaView

1.1.1 Introduction

ParaView is an open-source, multi-platform scientific data analysis and visualization tool that enables analysis and
visualization of extremely large datasets. ParaView is both a general purpose, end-user application with a distributed
architecture that can be seamlessly leveraged by your desktop or other remote parallel computing resources and an
extensible framework with a collection of tools and libraries for various applications including scripting (using Python),
web visualization (through ParaViewWeb), or in-situ analysis (with Catalyst).

ParaView leverages parallel data processing and rendering to enable interactive visualization for extremely large
datasets. It also includes support for large displays including tiled displays and immersive 3D displays with head
tracking and wand control capabilities.

ParaView also supports scripting and batch processing using Python. Using included Python modules, you can write
scripts that can perform almost all the functionality exposed by the interactive application and much more.

ParaView is open-source (BSD licensed, commercial software friendly). As with any successful open-source project,
ParaView is supported by an active user and developer community. Contributions to both the code and this user’s
manual that help make the tool and the documentation better are always welcome.

Did you know?

The ParaView project started in 2000 as a collaborative effort between Kitware Inc. and LANL (Los Alamos National
Labs). The initial funding was provided by a three year contract with the US Department of Energy ASCI Views
program. The first public release, ParaView 0.6, was announced in October 2002.

Independent of ParaView, Kitware started developing a web-based visualization system in December 2001. This
project was funded by Phase I and II SBIRs from the US ARL (Arm Research Laboratory) and eventually became the
PVEE (ParaView Enterprise Edition). PVEE significantly contributed to the development of ParaView’s client/server
architecture. PVEE was the precursor to ParaViewWeb, a modern web visualization solution based on ParaView.

Since the project began, Kitware has successfully collaborated with Sandia, LANL, the ARL, and various other aca-
demic and government institutions to continue development. Today, the project is still going strong!

In September 2005, Kitware, Sandia National Labs and CSimSoft started the development of ParaView 3.0. This was
a major effort focused on rewriting the user interface to be more user friendly and on developing a quantitative analysis
framework. ParaView 3.0 was released in May 2007.

3

ParaView Users Guide Documentation, Release 5.8.1

In this guide

This user’s manual is designed as a guide for using the ParaView application. It is geared toward users who have
a general understanding of common data visualization techniques. For scripting, a working knowledge of the Python
language is assumed. If you are new to Python, there are several tutorials and guides for getting started that are available
on the Internet.

Did You Know?

In this guide, we will periodically use these Did you know? boxes to provide additional information related to the topic
at hand.

Common Errors

Common Errors blocks are used to highlight some of the common problems or complications you may run into when
dealing with the topic of discussion.

This guide can be split into two volumes. Section 1.1 to Section 1.8 can be considered the user’s guide, where various
aspects of data analysis and visualization with ParaView are covered. Section 2.1 to Section 2.11 in Reference manual
part provide details on various components in the UI and the scripting API.

Getting help

This guide tries to cover most of the commonly used functionality in ParaView. ParaView’s flexible, pipeline-based
architecture opens up numerous possibilities. If you find yourself looking for some feature not covered in this guide,
refer to the Wiki pages (http://paraview.org/Wiki/ParaView) or to the forum (https://discourse.paraview.org/categories)
specially the |FAQ| and the |Tips and Tricks| categories. Also feel free to ask about it under the relevant |Support|
category.

Getting the software

ParaView is open source. The complete source code for all the functionality discussed in The ParaView Guide can be
downloaded from the ParaView website http://www.paraview.org. We also provide binaries for the major platforms:
Linux, Mac OS X, and Windows. You can get the source files and binaries for the official releases, as well as follow
ParaView’s active development, by downloading the nightly builds.

Providing details of how to build ParaView using the source files is beyond the scope of this guide. Refer to the Par-
aView gitlab (https://gitlab.kitware.com/paraview/paraview/-/blob/master/Documentation/dev/build.md) for more in-
formation.

1.1.2 Basics of visualization in ParaView

Visualization is the process of converting raw data into images and renderings to gain a better cognitive understanding of
the data. ParaView uses VTK, the Visualization Toolkit, to provide the backbone for visualization and data processing.

The VTK model is based on the data-flow paradigm. In this paradigm, data flows through the system being transformed
at each step by modules known as algorithms. Algorithms could be common operations such as clipping, slicing, or
generating contours from the data, or they could be computing derived quantities, etc. Algorithms have input ports
through which they take in data and output ports through which they produce output. You need producers that ingest
data into the system. These are simply algorithms that do not have an input port but have one or more output ports. They
are called sources . Readers that read data from files are examples of such sources. Additionally, there are algorithms

4 Chapter 1. Paraview User’s Guide

http://paraview.org/Wiki/ParaView
https://discourse.paraview.org/categories
http://www.paraview.org
https://gitlab.kitware.com/paraview/paraview/-/blob/master/Documentation/dev/build.md

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.1: Visualization model: Process objects A, B, and C input and/or output one or more data objects. Data objects
represent and provide access to data; process objects operate on the data. Objects A, B, and C are source, filter, and
mapper objects, respectively. [SML96]

that transform the data into graphics primitives so that they can be rendered on a computer screen or saved to disk
in another file. These algorithms, which have one or more input ports but do not have output ports, are called sinks
. Intermediate algorithms with input ports and output ports are called filters . Together, sources, filters, and sinks
provide a flexible infrastructure wherein you can create complex processing pipelines by simply connecting algorithms
to perform arbitrarily complex tasks.

For more information on VTK’s programming model, refer to [SML96].

This way of looking at the visualization pipeline is at the core of ParaView’s work flow: You bring your data into the
system by creating a reader – the source. You then apply filters to either extract information (e.g., iso-contours) and
render the results in a view or to save the data to disk using writers – the sinks.

ParaView includes readers for a multitude of file formats typically used in the computational science world. To effi-
ciently represent data from various fields with varying characteristics, VTK provides a rich data model that ParaView
uses. The data model can be thought of simply as ways of representing data in memory. We will cover the different
data types in more detail in Section 1.3.1. Readers produce a data type suitable for representing the information the
files contain. Based on the data type, ParaView allows you to create and apply filters to transform the data. You can
also show the data in a view to produce images or renderings. Just as there are several types of filters, each perfoming
different operations and types of processing, there are several kinds of views for generating various types of renderings
including 3D surface views, 2D bar and line views, parallel coordinate views, etc.

Did You Know?

The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, mod-
eling, image processing, volume rendering, scientific visualization, and information visualization. VTK also includes
ancillary support for 3D interaction widgets, two and three-dimensional annotation, and parallel computing.

At its core, VTK is implemented as a C++ toolkit, requiring users to build applications by combining various objects
into an application. The system also supports automated wrapping of the C++ core into Python, Java, and Tcl so that
VTK applications may also be written using these interpreted programming languages. VTK is used world-wide in
commercial applications, research and development, and as the basis of many advanced visualization applications such
as ParaView, VisIt, VisTrails, Slicer, MayaVi, and OsiriX.

1.1. Introduction to ParaView 5

ParaView Users Guide Documentation, Release 5.8.1

1.1.3 ParaView executables

ParaView comes with several executables that serve different purposes.

paraview

This is the main ParaView graphical user interface (GUI). In most cases, when we refer to ParaView, we are indeed
talking about this application. It is a Qt-based, cross-platform UI that provides access to the ParaView computing
capabilities. Major parts of this guide are dedicated to understanding and using this application.

pvpython

pvpython is the Python interpreter that runs ParaView’s Python scripts. You can think of this as the equivalent of the
paraview for scripting.

pvbatch

Similar to pvpython, pvbatch is also a Python interpreter that runs Python scripts for ParaView. The one difference
is that, while pvpython is meant to run interactive scripts, pvbatch is designed for batch processing. Additionally,
when running on computing resources with MPI capabilities, pvbatch can be run in parallel. We will cover this in
more detail in Section 2.6.9.

pvserver

For remote visualization, this executable represents the server that does all of the data processing and, potentially, the
rendering. You can make paraview connect to pvserver running remotely on an HPC resource. This allows you to
build and control visualization and analysis on the HPC resource from your desktop as if you were simply processing
it locally on your desktop!

pvdataserver and pvrenderserver

These can be thought of as the pvserver split into two separate executables: one for the data processing part,
pvdataserver, and one for the rendering part, pvrenderserver. Splitting these into separate processes makes it
possible to perform data processing and rendering on separate sets of nodes with appropriate computing capabilities
suitable for the two tasks. Just as with pvserver, paraview can connect to a pvdataserver- pvrenderserver pair
for remote visualization. Unless otherwise noted, all discussion of remote visualization or client-server visualization
in this guide is applicable to both pvserver and pvdataserver - pvrenderserver configurations.

1.1.4 Getting started with paraview

paraview graphical user interface

paraview is the graphical front-end to the ParaView application. The UI is designed to allow you to easily create
pipelines for data processing with arbitrary complexity. The UI provides panels for you to inspect and modify the
pipelines, to change parameters that in turn affect the processing pipelines, to perform various data selection and in-
spection actions to introspect the data, and to generate renderings. We will cover various aspects of the UI for the better
part of this guide.

6 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Let’s start by looking at the various components of the UI. If you run paraview for the first time, you will see something
similar to the Fig. 1.2. The UI is comprised of menus, dockable panels, toolbars, and the viewport – the central portion
of the application window.

Fig. 1.2: paraview application window.

Menus provide the standard set of options typical with a desktop application including options for opening/saving files
(File menu), for undo/redo (Edit menu), for the toggle panel, and for toolbar visibilities (View menu). Additionally, the
menus provide ways to create sources that generate test datasets of various types (Sources menu), as well new filters for
processing data (Filters menu). The Tools menu provides access to some of the advanced features in paraview such
as managing plugins and favorites.

Panels provide you with the ability to peek into the application’s state. For example, you can inspect the visualization
pipeline that has been set up (Pipeline Browser), as well as the memory that is being used (Memory Inspector
) and the parameters or properties for a processing module (Properties panel). Several of the panels also allow you
to change the values that are displayed, e.g., the Properties panel not only shows the processing module parameters,
but it also allows you to change them. Several of the panels are context sensitive. For example, the Properties panel
changes to show the parameters from the selected module as you change the active module in the Pipeline Browser
.

Toolbars are designed to provide quick access to common functionality. Several of the actions in the toolbar are ac-
cessible from other locations, including menus or panels. Similar to panels, some of the toolbar buttons are context
sensitive and will become enabled or disabled based on the selected module or view.

The viewport or the central portion of the paraview window is the area where ParaView renders results generated
from the data. The containers in which data can be rendered or shown are called views. You can create several different
types of views, all of which are laid out in this viewport area. By default, a 3D view is created, which is one of the
most commonly used views in ParaView.

1.1. Introduction to ParaView 7

ParaView Users Guide Documentation, Release 5.8.1

Understanding the visualization process

To gain a better understanding of how to use the application interface, let’s consider a simple example: creating a data
source and applying a filter to it.

Creating a source

The visualization process in ParaView begins by bringing your data into the application. Section 1.2 explains how to
read data from various file formats. Besides reading files to bring in data into the application, ParaView also provides
a collection of data sources that can produce sample datasets. These are available under the Sources menu. To create
a source, simply click on any item in the Source menu.

Did You Know?

As you move your cursor over the items in any menu, on most platforms (except Mac OS X), you’ll see a brief description
of the item in the status bar on the lower-left corner in the application window.

If you click on Sources > Sphere, for example, you’ll create a producer algorithm that generates a spherical surface, as
shown in Fig. 1.3.

Fig. 1.3: Visualization in paraview: Step 1.

A few things to note:

8 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1. A pipeline module is added in the Pipeline Browser panel with a name derived from the menu item, as is
highlighted.

2. The Properties panel fills up with text to indicate that it’s showing properties for the highlighted item (which,
in this case, is Sphere1), as well as to display some widgets for parameters such as Center , Radius , etc.

3. On the Properties panel, the Apply button becomes enabled and highlighted.

4. The 3D view remains unaffected, as nothing new is shown or rendered in this view as of yet.

Let’s take a closer look at what has happened. When we clicked on Sources > Sphere, referring to Section 1.1.2, we
created an instance of a source that can produce a spherical surface mesh – that’s what is reflected in the Pipeline
Browser . This instance receives a name, which is used by the Sphere1 and the Pipeline Browser , as well as
other components of the UI, to refer to this instance of the source. Pipeline modules such as sources and filters have
parameters on them that you can change that affect that module’s behavior. We call them properties. The Properties
panel shows these properties and allows you to change them. Since the ingestion of data into the system can be a time-
consuming process, paraview allows you to change the properties before the module executes or performs the actual
processing to ingest the data. Hence, the Apply button is highlighted to indicate that you need to accept the properties
before the application will proceed. Since no data has entered the system yet, there’s nothing to show. Therefore, the
3D view remains unaffected.

Let’s assume we are okay with the default values for all of the properties on the Sphere1 . Next, click on the Apply
button.

Let’s assume we are okay with the default values for all of the properties on the Sphere1. Next, click on the Apply
button.

Fig. 1.4: Visualization in paraview: Step 2.

1.1. Introduction to ParaView 9

ParaView Users Guide Documentation, Release 5.8.1

The following will ensue (Fig. 1.4):

1. The Apply button goes back to its old disabled/un-highlighted state.

2. A spherical surface is rendered in the 3D view.

3. The Display section on the Properties panel now shows new parameters or properties.

4. Certain toolbars update, and you can see that toolbars with text, such as Solid Color and Surface , now
become enabled.

By clicking Apply , we told paraview to apply the properties shown on the Properties panel. When a new source
(or filter) is applied for the first time, paraview will automatically show the data that the pipeline module produces in
the current view, if possible. In this case, the sphere source produces a surface mesh, which is then shown or displayed
in the 3D view.

The properties that allow you to control how the data is displayed in the view are now shown on the Properties panel
in the Display section. Things such as the surface color, rendering type or representation, shading parameters, etc.,
are shown under this newly updated section. We will look at display properties in more detail in Section 1.4.

Some of the properties that are commonly used are also duplicated in the toolbar. These properties include the data
array with which the surface is colored and the representation type. These are the changes in the toolbar that allow you
to quickly change some display properties.

Changing properties

If you change any of the properties on the sphere source, such as the properties under the Properties section on the
Properties panel, including the Radius for the spherical mesh or its Center , the Apply button will be highlighted
again. Once you are finished with all of the property changes, you can hit Apply to apply the changes. Once the
changes are applied, paraview will re-execute the sphere source to produce a new mesh, as requested. It will then
automatically update the view, and you will see the new result rendered.

If you change any of the display properties for the sphere source, such as the properties under the Display section of
the Properties panel (including Representation or Opacity), the Apply button is not affected, the changes are
immediately applied, and the view is updated.

The rationale behind this is that, typically, the execution of the source (or filter) is more computationally intensive
than the rendering. Changing source (or filter) properties causes that algorithm to re-execute, while changing display
properties, in most cases, only triggers a fresh render with an updated graphics state.

Did You Know?

For some workflows with smaller data sizes, it may be more convenient if the Apply button was automatically applied
even after changes are made to the pipeline module properties. You can change this from the application settings dialog,
which is accessible from the Edit > Settings menu. The setting is called Auto Apply . You can also change the Auto
Apply state using the button from the toolbar.

10 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Applying filters

As per the data-flow paradigm, one creates pipelines with filters to transform data. Similar to the Sources menu, which
allows us to create new data sources, there’s a Filters menu that provides access to the large set of filters that are available
in ParaView. If you peruse the items in this menu, some of them will be enabled, and some of them will be disabled.
Filters that can work with the data type being produced by the sphere source are enabled, while others are disabled.
You can click on any of the enabled filters to create a new instance of that filter type.

Did You Know?

To figure out why a particular filter doesn’t work with the current source, simply move your mouse over the disabled
item in the Filters menu. On Linux and Windows (not OS X, however), the status bar will provide a brief explanation
of why that filter is not available.

For example, if you click on Filters > Shrink, it will create a filter that shrinks each of the mesh cells by a fixed factor.
Exactly as before, when we created the sphere source, we see that the newly-created filter is given a new name, Shrink1
, and is highlighted in the Pipeline Browser . The Properties panel is also updated to show the properties for
this new filter, and the Apply button is highlighted to request that we accept the properties for the filter so that it
can be executed and the result can be rendered. If you click back and forth between the Sphere1 and Shrink1 in the
Pipeline Browser , you’ll see the Properties panel and toolbars update, reflecting the state of the selected pipeline
module. This is an important concept in ParaView. There’s a notion of active pipeline module, called the active source
. Several panels, toolbars, and menus will update based on the active source.

If you click Apply , as was the case before, the shrink filter will be executed and the resulting dataset will be generated
and shown in the 3D view. paraview will also automatically hide the result from the Sphere1 so that it is not shown
in the view. Otherwise, the two datasets will overlap. This is reflected by the change of state for the eyeball icons in
the Pipeline Browser next to each of the pipeline modules. You can show or hide results from any pipeline module
by clicking on the eyeballs.

This simple workflow forms the basis of all the data analysis and visualization in ParaView. The process involves
creating sources and filters, changing their parameters, and showing the generated result in one or more views. In the
rest of this guide, we will cover various types of filters and data processing that you can do. We will also cover different
types of views that can help you produce a wide array of 2D and 3D visualizations, as well as inspect your data and
drill down into it.

Common Errors

Beginners often forget to hit the Apply button after creating sources or filters or after changing properties. This is one

1.1. Introduction to ParaView 11

ParaView Users Guide Documentation, Release 5.8.1

of the most common pitfalls for users new to the ParaView workflow.

1.1.5 Getting started with pvpython

While this section refers to pvpython, everything that we discuss here is applicable to pvbatch as well. Until we
start looking into parallel processing, the only difference between the two executables is that pvpython provides an
interactive shell wherein you can type your commands, while pvbatch expects the Python script to be specified on the
command line argument.

pvpython scripting interface

ParaView provides a scripting interface to write scripts for performing the tasks that you could do using the GUI. The
scripting interface can be accessed through Python, which is an interpreted programming language popular among
the scientific community for its simplicity and its capabilities. While a working knowledge of Python will be useful
for writing scripts with advanced capabilities, you should be able to follow most of the discussion in this book about
ParaView scripting even without much Python exposure.

ParaView provides a paraview package with several Python modules that expose various functionalities. The primary
scripting interface is provided by the simple module.

When you start pvpython, you should see a prompt in a terminal window as follows (with some platform specific
differences).

Python 2.7.5 (default, Sep 2 2013, 05:24:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information
>>>

You can now type commands at this prompt, and ParaView will execute them. To bring in the ParaView scripting
API, you first need to import the simple module from the paraview package as follows:

>>> from paraview.simple import *

Common Errors

Remember to hit the Enter or Return key after every command to execute it. Any Python interpreter will not execute
the command until Enter is hit.

If the module is loaded correctly, pvpython will present a prompt for the next command.

>>> from paraview.simple import *
>>>

You can consider this as in the same state as when paraview was started (with some differences that we can ignore for
now). The application is ready to ingest data and start processing.

12 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Understanding the visualization process

Let’s try to understand the workflow by looking at the same use-case as we did in Section 1.1.4.

Creating a source

In paraview, we created the data source by using the Sources menu. In the scripting environment, this maps to simply
typing the name of the source to create.

>>> Sphere()

This will create the sphere source with a default set of properties. Just like with paraview, as soon as a new pipeline
module is created, it becomes the active source.

Now, to show the active source in a view, try:

>>> Show()
>>> Render()

The Show call will prepare the display, while the Render call will cause the rendering to occur. In addition, a new
window will popup, showing the result (Fig. 1.5). This is similar to the state after hitting Apply in the UI.

Fig. 1.5: Window showing result from the Python code.

1.1. Introduction to ParaView 13

ParaView Users Guide Documentation, Release 5.8.1

Changing properties

To change the properties on the sphere source, you can use the SetProperties function.

Set a single property on the active source.
>>> SetProperties(Radius=1.0)

You can also set multiple properties.
>>> SetProperties(Center=[1, 0, 0], StartTheta=100)

Similar to the Properties panel, SetProperties affects the active source. To query the current value of any property
on the active source, use GetProperty .

>>> radius = GetProperty("Radius")
>>> print(radius)
1.0
>>> center = GetProperty("Center")
>>> print(center)
[1.0, 0.0, 0.0]

SetProperties and GetProperty functions serve the same function as the Properties section of the Properties
panel – they allow you to set and introspect the pipeline module properties for the active source. Likewise,
for the Display section of the panel, or the display properties, we have the SetDisplayProperties and
GetDisplayProperty functions.

>>> SetDisplayProperties(Opacity=0.5)
>>> GetDisplayProperty("Opacity")
0.5

Common Errors

Note how the property names for the SetProperties and SetDisplayProperties functions are not enclosed in
double-quotes, while those for the GetProperty and GetDisplayProperty methods are.

In paraview, every time you hit Apply or change a display property, the UI automatically re-renders the view. In the
scripting environment, you have to do this manually by calling the Render function every time you want to re-render
and look at the updated result.

fixme{we’re missing blurb about reset camera}.

Applying filters

Similar to creating a source, to apply a filter, you can simply create the filter by name.

Create the `Shrink' filter and connect it to the active source
which is the `Sphere' instance.
>>> Shrink()
As soon as the Shrink filter is created, it will now become the new active
source. All methods acting on active source now act on this filter instance
and not the Sphere instance created earlier.

Show the resulting data and render it.
(continues on next page)

14 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> Show()
>>> Render()

If you tried the above script, you’ll notice the result isn’t exactly what we expected. For some reason, the shrank cells
are not visible. This is because we missed one stage: In paraview, the UI was smart enough to automatically hide
the input dataset for the newly created filter after we hit apply. In the scripting interface, such operations are the user’s
responsibility. We should have hidden the sphere source from the view. We can use the Hide method, the counter part
of Show , to hide the active source. But, now we have a problem – when we created the shrink filter, we changed the
active source to be the shrink instance. Luckily, all the functions we discussed so far can take an optional first argument,
which is the source or filter instance on which to operate. If provided, that instance is used instead of the active source.
The solution is as follows:

Get the input property for the active source, i.e. the input for the shrink.
>>> shrinksInput = GetProperty("Input")

This is indeed the sphere instance we created earlier.
>>> print(shrinksInput)
<paraview.servermanager.Sphere object at 0x11d731e90>

Hide the sphere instance explicitly.
>>> Hide(shrinksInput)

Re-render the result.
>>> Render()

Alternatively, you could also get/set the active source using the GetActiveSource and SetActiveSource functions.

>>> shrinkInstance = GetActiveSource()
>>> print(shrinkInstance)
<paraview.servermanager.Shrink object at 0x11d731ed0>

Get the input property for the active source, i.e. the input
for the shrink.
>>> sphereInstance = GetProperty("Input")

This is indeed the sphere instance we created earlier.
>>> print(sphereInstance)
<paraview.servermanager.Sphere object at 0x11d731e90>

Change active source to sphere and hide it.
>>> SetActiveSource(sphereInstance)
>>> Hide()

Now restore the active source back to the shrink instance.
>>> SetActiveSource(shrinkInstance)

Re-render the result
>>> Render()

The result is shown in Fig. 1.6 .

SetActiveSource has same effect as changing the pipeline module, highlighted in the Pipeline Browser , by
clicking on a different module.

1.1. Introduction to ParaView 15

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.6: Window showing result from the Python code after applying the shrink filter.

Alternative approach

Here’s another way of doing something similar to what we did in the previous section for those familiar with Python
and/or object-oriented programming. It’s totally okay to stick with the previous approach.

>>> from paraview.simple import *
>>> sphereInstance = Sphere()
>>> sphereInstance.Radius = 1.0
>>> sphereInstance.Center[1] = 1.0
>>> print(sphereInstance.Center)
[0.0, 1.0, 0.0]

>>> sphereDisplay = Show(sphereInstance)
>>> view = Render()
>>> sphereDisplay.Opacity = 0.5

Render function can take in an optional view argument, otherwise it
will simply use the active view.
>>> Render(view)

>>> shrinkInstance = Shrink(Input=sphereInstance,
ShrinkFactor=1.0)

>>> print(shrinkInstance.ShrinkFactor)
1.0
>>> Hide(sphereInstance)

(continues on next page)

16 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> shrinkDisplay = Show(shrinkInstance)
>>> Render()

Updating the pipeline

When changing properties on the Properties panel in paraview, we noticed that the algorithm doesn’t re-execute
until you hit Apply . In reality, Apply isn’t what’s actually triggering the execution or the updating of the processing
pipeline. What happens is that Apply updates the parameters on the pipeline module and causes the view to render.
If the output of the pipeline module is visible in the view, or if the output of any filter connected to it downstream is
visible in the view, ParaView will determine that the data rendered is obsolete and request the pipeline to re-execute.
It implies that if that pipeline module (or any of the filters downstream from it) is not visible in the view, ParaView
will have no reason to re-execute the pipeline, and the pipeline module will not be be updated. If, later on, you do make
this module visible in the view, ParaView will automatically update and execute the pipeline. This is often referred to
as demand-driven pipeline execution . It makes it possible to avoid unnecessary module executions.

In paraview, you can get by without ever noticing this since the application manages pipeline updates automatically. In
pvpython too, if your scripts are producing renderings in views, you’d never notice this as long as you remember to call
Render . However, you may want to write scripts to produce transformed datasets or to determine data characteristics.
In such cases, since you may never create a view, you’ll never be seeing the pipeline update, no matter how many times
you change the properties.

Accordingly, you must use the UpdatePipeline function. UpdatePipeline updates the pipeline connected to the
active source (or only until the active source, i.e., anything downstream from it, won’t be updated).

>>> from paraview.simple import *
>>> sphere = Sphere()

Print the bounds for the data produced by sphere.
>>> print(sphere.GetDataInformation().GetBounds())
(1e+299, -1e+299, 1e+299, -1e+299, 1e+299, -1e+299)
The bounds are invalid -- no data has been produced yet.

Update the pipeline explicitly on the active source.
>>> UpdatePipeline()

Alternative way of doing the same but specifying the source
to update explicitly.
>>> UpdatePipeline(proxy=sphere)

Let's check the bounds again.
>>> sphere.GetDataInformation().GetBounds()
(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -
→˓0.5, 0.5)

If we call UpdatePipeline() again, this will have no effect since
the pipeline hasn't been modified, so there's no need to re-execute.
>>> UpdatePipeline()
>>> sphere.GetDataInformation().GetBounds()
(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -
→˓0.5, 0.5)

Now let's change a property.
(continues on next page)

1.1. Introduction to ParaView 17

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> sphere.Radius = 10

The bounds won't change since the pipeline hasn't re-executed.
>>> sphere.GetDataInformation().GetBounds()
(-0.48746395111083984, 0.48746395111083984, -0.48746395111083984, 0.48746395111083984, -
→˓0.5, 0.5)

Let's update and see:
>>> UpdatePipeline()
>>> sphere.GetDataInformation().GetBounds()
(-9.749279022216797, 9.749279022216797, -9.749279022216797, 9.749279022216797, -10.0, 10.
→˓0)

We will look at the sphere.GetDataInformation API in Section 1.3.3 in more detail.

For temporal datasets, UpdatePipeline takes in a time argument, which is the time for which the pipeline must be
updated.

To update to time 10.0:
>>> UpdatePipeline(10.0)

Alternative way of doing the same:
>>> UpdatePipeline(time=10.0)

If not using the active source:
>>> UpdatePipeline(10.0, source)
>>> UpdatePipeline(time=10.0, proxy=source)

1.1.6 Scripting in paraview

The Python Shell

The paraview application also provides access to an internal shell, in which you can enter Python commands and
scripts exactly as with pvpython. To access the Python shell in the GUI, use the View > Python Shell menu option. A
dialog will pop up with a prompt exactly like pvpython. You can try inputting commands from the earlier section into
this shell. As you type each of the commands, you will see the user interface update after each command, e.g., when
you create the sphere source instance, it will be shown in the Pipeline Browser . If you change the active source,
the Pipeline Browser and other UI components will update to reflect the change. If you change any properties or
display properties, the Properties panel will update to reflect the change as well!

Did You Know?

The Python Shell in paraview supports auto-completion for functions and instance methods. Try hitting the Tab
key after partially typing any command (as shown in Fig. 1.7).

18 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.7: Python Shell in paraview provides access to the scripting.

1.1. Introduction to ParaView 19

ParaView Users Guide Documentation, Release 5.8.1

Tracing actions for scripting

This guide provides a fair overview of ParaView’s Python API. However, there will be cases when you just want to
know how to complete a particular action or sequence of actions that you can do with the GUI using a Python script
instead. To accomplish this, paraview supports tracing your actions in the UI as a Python script. Simply start tracing
by clicking on Tools > Start Trace. paraview now enters a mode where all your actions (or at least those relevant
for scripting) are monitored. Any time you create a source or filter, open data files, change properties and hit Apply ,
interact with the 3D scene, or save screenshots, etc., your actions will be monitored. Once you are done with the series
of actions that you want to script, click Tools > Stop Trace. paraview will then pop up an editor window with the
generated trace. This will be the Python script equivalent for the actions you performed. You can now save this as a
script to use for batch processing.

1.2 Loading Data

In a visualization pipeline, data sources bring data into the system for processing and visualization. Sources, such as the
Sphere source (accessible from the Sources menu in paraview), programmatically create datasets for processing.
Another type of data sources are readers. Readers can read data written out in disk files or other databases and bring it
into ParaView for processing. ParaView includes readers that can read several of the commonly used scientific data
formats. It’s also possible to write plugins that add support for new or proprietary file formats.

ParaView provides several sample datasets for you to get started. You can download an archive with several types of
data files from the download page at https://www.paraview.org/download under the Data section.

1.2.1 Opening data files in paraview

To open a data file in paraview, you use the Open File dialog. This dialog can be accessed from the File > Open

menu or by using the button in the Main Controls toolbar. You can also use the keyboard shortcut CTRL + O (or
+ O) to open this dialog.

Fig. 1.8: Open File dialog in paraview for opening data (and other) files.

20 Chapter 1. Paraview User’s Guide

https://www.paraview.org/download

ParaView Users Guide Documentation, Release 5.8.1

The Open File dialog allows you to browse the file system on the data processing nodes. This will become clear when
we look at using ParaView for remote visualization. While several of the UI elements in this dialog are obvious such as
navigating up the current directory, creating a new directory, and navigating back and forth between directories, there
are a few things to note.

• The Favorites pane shows some platform-specific common locations such as your home directory and desktop.

• The Recent Directories pane shows a few of the most recently used directories.

You can browse to the directory containing your datasets and either select the file and hit Ok or simply double click on
the file to open it. You can also select multiple files using the CTRL (or) key. This will open each of the selected files
separately.

When a file is opened, paraview will create a reader instance of the type suitable for the selected file based on its
extension. The reader will simply be another pipeline module, similar to the source we created in Section 1.1. From
this point forward, the workflow will be the same as we discussed in Section 1.1.4 : You adjust the reader properties,
if needed, and hit Apply . paraview will then read the data from the file and render it in the view.

If you selected multiple files using the CTRL (or) key, paraview will create multiple reader modules. When you hit
Apply , all of the readers will be executed, and their data will be shown in the view.

Did you know?

This ability to hit the Apply button once to accept changes on multiple readers applies to other pipeline modules,
including sources and filters. In general, you can change properties for multiple modules in a pipeline, and hit Apply
to accept all of the changes at once. It is possible to override this behavior from the Settings dialog.

Dealing with unknown extensions

On occasion, you will run into situations where a file has an unusual name and, despite the fact that ParaView sup-
ports reading the file format, paraview does not recognize the file because its extension does not match the expected
extension. In this case, paraview will pop up the Open Data With... dialog, which lists several readers (Fig. 1.10).
You can then pick the reader for the correct file format from this list and continue. If you picked an incorrect reader,
however, you’ll get error messages either when the reader module is instantiated or after you hit Apply . In either case,
you can simply Delete the reader module and try opening the file again, this time choosing a different reader.

Error messages in paraview are shown in the Output Messages window (Fig. 1.11). It is accessible from the View
> Output Messages menu. Whenever there’s a new error message, paraview will automatically pop open this window

1.2. Loading Data 21

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.9: The Open File dialog can be used to select a temporal file series (top) or select multiple files to open
separately (bottom).

and raise it to the top. This window can be attached, or docked, in the main window so that it is visible with the other
user interface elements without covering them up.

Handling temporal file series

Most datasets produced by scientific simulation runs are temporal in nature. File formats differ in how this information
is saved in the file. While several file formats support saving multiple timesteps in the same file, others save them out
as a sequence of files, known as a file series

The Open File dialog automatically detects file series and shows them as a grouped element, as shown in Fig. 1.9. To
load the file series, simply select the group, and hit Ok . You can also open a single file in the series as a regular file.
To do so, open the file group and select the file you want to open.

paraview automatically detects several of the commonly-known file naming patterns used for indicating a file series.
These include:

fooN.vtk fooN.vtk Nfoo.vtk foo.vtk.N
foo_N.vtk foo.N.vtk N.foo.vtk foo.vtksN

where foo could be any filename, N is a numeral sequence (with any number of leading zeros), and vtk could be any
extension.

Dealing with time

When you open a dataset with time, either as a file series or in a file format that natively supports time, paraview will
automatically setup an animation for you so that you can play through each of the time steps in the dataset by using the

button on the VCR Controls toolbar (Fig. 1.12). You can change or modify this animation and further customize
it, as discussed in Chapter Section 1.7.

22 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.10: Open Data With... dialog shown to manually choose the reader to use for a file with an unknown exten-
sion.}

Fig. 1.11: The Output Messages window is used to show errors, warnings, and other messages raised by the appli-
cation.

1.2. Loading Data 23

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.12: VCR Controls toolbar for interacting with an animation.

Reopening previously opened files

paraview remembers most recently opened files (or file series). Simply use the File > Recent Files menu. paraview
also remembers the reader type selected for files with unknown extensions or for occasions when multiple reader choices
were available.

Opening files using command line options

paraview provides a command line option that can be used to open datasets on startup.

> paraview --data=.../ParaViewData/Data/can.ex2

This is equivalent to opening a can.ex2 data file from the Open File dialog. The same set of follow-up actions happen.
For example, paraview will try to locate a reader for the file, create that reader, and wait for you to hit Apply .

To open a file series, simply replace the numbers in the file name sequence by a . For example, to open a file series
named my0.vtk, my1.vtk . . . myN.vtk, use my..vtk.

> paraview --data=.../ParaViewData/Data/my..vtk

Common properties for readers

ParaView uses different reader implementations for different file formats. Each of these have different properties
available to you to customize how the data is read and can vary greatly depending on the capabilities of the file format
itself or the particular reader implementation. Let’s look at some of the properties commonly available in readers.

Selecting data arrays

One of the most common properties on readers is one that allows you to select the data arrays (cell centered, point
centered, or otherwise, if applicable) to be loaded. Often times, loading only the data arrays you know you are going
to use in the visualization will save memory, as well as processing time, since the reader does not have to read in those
data arrays, and the filters in the pipeline do not have to process them.

Did you know?

You can change paraview’s default behavior to load all available data arrays by selecting the Load All Variables
checkbox under Settings/Properties Panel Options/Advanced .

24 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.13: Array selection widget for selecting array to load from a data file.

The user interface for selecting the arrays to load is simply a list with the names of the arrays and a checkbox indicating

whether that array is to be loaded or not (Fig. 1.13). Icons, such as and are often used in this widget to give
you an indication of whether the array is cell-centered or point-centered, respectively.

If you initially de-select an array, but then as you’re setting up your visualization pipeline realize that you need that data
array, you can always go back to the Properties page for the reader by making the reader active in the Pipeline
Browser and then changing the array selection. ParaView will automatically re-execute any processing pipeline set
up on the reader with this new data array.

Common Errors

Remember to hit Apply (or use Auto Apply) after changing the array selection for the change to take effect.

Sometimes the list of data arrays can get quite large, and it can become cumbersome to find the array for which you are
looking. To help with such situations, paraview provides a mechanism to search lists. Click inside the widget to make
it get the focus. Then type CTRL + F (or + F) to get a search widget. Now you can type in the text to search. Matching
rows will be highlighted (Fig. 1.14).

Did you know?

The ability to search for items in an array selection widget also applies to other list and tree widgets in the paraview

1.2. Loading Data 25

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.14: To search through large lists in paraview, you can use CTRL + F.

UI. Whenever you see a widget with a large number of entries in a list, table, or tree fashion, try using CTRL + F (or +
F).

1.2.2 Opening data files in pvpython

To open data files using the scripting interface, ParaView provides the OpenDataFile function.

>>> reader = OpenDataFile(".../ParaViewData/Data/can.ex2")
>>> if reader:
... print("Success")
... else:
... print("Failed")
...

OpenDataFile will try to determine an appropriate reader based on the file extension, just like paraview. If no reader
is determined, None is returned. If multiple readers can open the file, however, OpenDataFile simply picks the first
reader. If you explicitly want to create a specific reader, you can always create the reader by its name, similar to other
sources and filters.

>>> reader = ExodusIIReader(FileName=".../ParaViewData/Data/can.ex2")

To find out information about the reader created and the properties available on it, you can use the help function.

>>> reader = ExodusIIReader(FileName=".../ParaViewData/Data/can.ex2")
>>> help(reader)
Help on ExodusIIReader in module paraview.servermanager object:

class ExodusIIReader(ExodusIIReaderProxy)
| The Exodus reader loads
| Exodus II files and produces an unstructured grid output.
| The default file extensions are .g, .e, .ex2, .ex2v2,

(continues on next page)

26 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

| .exo, .gen, .exoII, .exii, .0, .00, .000, and .0000. The
| file format is described fully at:
| http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf.
| ...
|
| ---
| Data descriptors defined here:
|
| AnimateVibrations
| If this flag is on and HasModeShapes is also on, then
| this reader will report a continuous time range [0,1] and
| animate the displacements in a periodic sinusoid. If this
| flag is off and HasModeShapes is on, this reader ignores
| time. This flag has no effect if HasModeShapes is off.
|
| ApplyDisplacements
| Geometric locations can include displacements. When this
| option is on, the nodal positions are 'displaced' by the
| standard exodus displacement vector. If displacements are
| turned 'off', the user can explicitly add them by applying
| a warp filter.
| ...

Did you know?

The help function can be used to get information about properties available on any source or filter instance. It not only
lists the properties, but also provides information about how they affect the pipeline module. help can also be used on
functions. For example:

>>> help(OpenDataFile)

Help on function OpenDataFile in module paraview.simple:

OpenDataFile(filename, **extraArgs)
Creates a reader to read the given file, if possible.
This uses extension matching to determine the best reader
possible. If a reader cannot be identified, then this
returns None.

Handling temporal file series

Unlike paraview, pvpython does not automatically detect and load file series . You have to explicitly list the filenames
in the series and pass that to the OpenDataFile call.

Create a list with the names of all the files in the file series in
correct order.
>>> files = [".../Data/multicomb_0.vts",

".../Data/multicomb_1.vts",
".../Data/multicomb_2.vts"]

>>> reader = OpenDataFile(files)

1.2. Loading Data 27

ParaView Users Guide Documentation, Release 5.8.1

Dealing with time

Similar to paraview, if you open a time series or a file with multiple timesteps, pvpython will automatically set up
an animation for you to play through the timesteps.

>>> files = [".../Data/multicomb_0.vts",
".../Data/multicomb_1.vts",
".../Data/multicomb_2.vts"]

>>> reader = OpenDataFile(files)
>>> Show()
>>> Render()

Get access to the animation scene.
>>> scene = GetAnimationScene()
Now you use the API on the scene when doing things such as playing
the animation, stepping through it, etc.

This will simply play through the animation once and stop. Watch
the rendered view after you hit `Enter.'
>>> scene.Play()

Common properties on readers

Selecting data arrays

For those properties on readers that allow you to control what to read in from the file such as point data arrays, cell data
arrays, or data blocks, paraview uses a selection widget, as seen in Section 1.2.1. Likewise, pvpython provides an
API that allows you to determine the available options and then select/deselect them.

The name of the property that allows you to make such selections depends on the reader itself. When in doubt, use the
tracing capabilities in paraview (Section 1.1.6) to figure it out. You can also use help (Section 1.2.2).

ExodusIIReader has a PointVariables property that can be used to select the point data arrays to load. Let’s use
this as an example.

Open an ExodusII data file.
>>> reader = OpenDataFile(".../Data/can.ex2")

Alternatively, you can explicitly create the reader instance as:
>>> reader = ExodusIIReader(FileName = ".../Data/can.ex2")

To query/print the current status for `PointVariables' property,
we do what we would have done for any other property:
>>> print(GetProperty("PointVariables"))
['DISPL', 'VEL', 'ACCL']

An alternative way of doing the same is as follows:
>>> print(reader.PointVariables)
['DISPL', 'VEL', 'ACCL']

To set the property, simply set it to list containing the names to
enable, e.g., if we want to read only the 'DISPL' array, we do
the following:

(continues on next page)

28 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> SetProperties(PointVariables=['DISPL'])

Or using the alternative way for doing the same:
>>> reader.PointVariables = ['DISPL']

Now, the new value for PointVariables is:
>>> print(reader.PointVariables)
['DISPL']

To determine the array available, use:
>>> print(reader.PointVariables.Available)
['DISPL', 'VEL', 'ACCL']
These are the arrays available in the file.

Changing PointVariables only changes the value on the property. The reader does not re-execute until a re-execution
is requested either by calling Render or by explicitly updating the pipeline using UpdatePipeline .

>>> reader.PointVariables = ['DISPL', 'VEL', 'ACCL']

Assuming that the reader is indeed the active source, let's update
the pipeline:
>>> UpdatePipeline()

Or you can use the following form if you're unsure of the active
source or just do not want to worry about it.
>>> UpdatePipeline(proxy=reader)

Print the list of point arrays read in.
>>> print(reader.PointData[:])
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeId, Array: VEL]

Change the selection.
>>> reader.PointVariables = ['DISPL']

Print the list of point arrays read in, nothing changes!
>>> print(reader.PointData[:])
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeId, Array: VEL]

Update the pipeline.
>>> UpdatePipeline()

Now the arrays read in has indeed changed as we expected.
>>> print(reader.PointData[:])
[Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeId]

We will cover the reader.PointData API in more details in Section 1.3.3.

1.2. Loading Data 29

ParaView Users Guide Documentation, Release 5.8.1

1.2.3 Reloading files

While ParaView is often used after the simulation has generated all the data, it is not uncommon to use ParaView to
inspect data files as they are being written out by the simulation. In such cases, the simulation may either be modifying
existing file(s) with new timesteps or creating new files for each timestep. In such cases, you may want to refresh
ParaView to make it aware of the changes. In paraview, this can be done using Reload Files . When the reader
is active, you can use the File > Reload Files menu to request the reader to refresh. paraview will prompt you to
choose whether to reload the existing file(s) or look for new files in the file series, as shown in Fig. 1.15. Click on
Reload existing file(s) , to force the reader to re-read the files already opened. This is useful in cases where the
simulation may have modified existing file(s). Use Find new files to make the reader aware of any new files in the
file series.

Fig. 1.15: The Reload Options dialog allows you to choose how to refresh the reader.

Similar to paraview, in pvpython, you use ReloadFiles to reload existing files, and ExtendFilesSeries to look
for new files in a file series.

For file being modified in place per timestep
>>> reader = OpenDataFile(file)
...
>>> ReloadFiles(reader)

For files being generated per timestep
>>> reader = OpenDataFile(file)
...
>>> ExtendFilesSeries(reader)

1.3 Understanding Data

1.3.1 VTK data model

To use ParaView effectively, you need to understand the ParaView data model. ParaView uses VTK, the Visualization
Toolkit, to provide the visualization and data processing model. This chapter briefly introduces the VTK data model
used by ParaView. For more details, refer to one of the VTK books.

The most fundamental data structure in VTK is a data object. Data objects can either be scientific datasets, such as
rectilinear grids or finite elements meshes (see below), or more abstract data structures, such as graphs or trees. These
datasets are formed from smaller building blocks: mesh (topology and geometry) and attributes.

30 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Mesh

Even though the actual data structure used to store the mesh in memory depends on the type of the dataset, some
abstractions are common to all types. In general, a mesh consists of vertices (points) and cells (elements, zones). Cells
are used to discretize a region and can have various types such as tetrahedra, hexahedra, etc. Each cell contains a set
of vertices. The mapping from cells to vertices is called the connectivity. Note that even though it is possible to define
data elements such as faces and edges, VTK does not represent these explicitly. Rather, they are implied by a cell’s type
and by its connectivity. One exception to this rule is the arbitrary polyhedron, which explicitly stores its faces. Fig.
1.20 is an example mesh that consists of two cells. The first cell is defined by vertices (0, 1, 3, 4), and the second cell
is defined by vertices (1, 2, 4, 5). These cells are neighbors because they share the edge defined by the points (1, 4).

Fig. 1.16: Example of a mesh.

A mesh is fully defined by its topology and the spatial coordinates of its vertices. In VTK, the point coordinates may
be implicit, or they may be explicitly defined by a data array of dimensions (𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑜𝑖𝑛𝑡𝑠× 3).

Attributes (fields, arrays)

An attribute (or a data array or field) defines the discrete values of a field over the mesh. Examples of attributes
include pressure, temperature, velocity, and stress tensor. Note that VTK does not specifically define different types
of attributes. All attributes are stored as data arrays, which can have an arbitrary number of components. ParaView
makes some assumptions in regards to the number of components. For example, a 3-component array is assumed to
be an array of vectors. Attributes can be associated with points or cells. It is also possible to have attributes that are
not associated with either. Fig. 1.17 demonstrates the use of a point-centered attribute. Note that the attribute is only
defined on the vertices. Interpolation is used to obtain the values everywhere else. The interpolation functions used
depend on the cell type. See the VTK documentation for details.

Fig. 1.17: Point-centered attribute in a data array or field.

Fig. 1.18 demonstrates the use of a cell-centered attribute. Note that cell-centered attributes are assumed to be constant
over each cell. Due to this property, many filters in VTK cannot be directly applied to cell-centered attributes. It is
normally required to apply a Cell Data to Point Data filter. In ParaView, this filter is applied automatically,
when necessary.

1.3. Understanding Data 31

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.18: Cell-centered attribute.

Uniform rectilinear grid (image data)

Fig. 1.19: Sample uniform rectilinear grid.

A uniform rectilinear grid, or image data, defines its topology and point coordinates implicitly (Fig. 1.19). To fully
define the mesh for an image data, VTK uses the following:

• Extents - These define the minimum and maximum indices in each direction. For example, an image data of
extents (0, 9), (0, 19), (0, 29) has 10 points in the x-direction, 20 points in the y-direction, and 30 points in the
z-direction. The total number of points is 10× 20× 30.

• Origin - This is the position of a point defined with indices (0, 0, 0).

• Spacing - This is the distance between each point. Spacing for each direction can defined independently.

The coordinate of each point is defined as follows: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛 + 𝑖𝑛𝑑𝑒𝑥 × 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 where 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒,
𝑜𝑟𝑖𝑔𝑖𝑛, 𝑖𝑛𝑑𝑒𝑥, and 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 are vectors of length 3.

Note that the generic VTK interface for all datasets uses a flat index. The (𝑖, 𝑗, 𝑘) index can be converted to this flat
index as follows: 𝑖𝑑𝑥_𝑓𝑙𝑎𝑡 = 𝑘 × (𝑛𝑝𝑡𝑠𝑥 × 𝑛𝑝𝑡𝑠𝑦) + 𝑗 × 𝑛𝑝𝑡𝑟𝑥 + 𝑖.

A uniform rectilinear grid consists of cells of the same type. This type is determined by the dimensionality of the
dataset (based on the extents) and can either be vertex (0D), line (1D), pixel (2D), or voxel (3D).

Due to its regular nature, image data requires less storage than other datasets. Furthermore, many algorithms in VTK
have been optimized to take advantage of this property and are more efficient for image data.

32 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Rectilinear grid

Fig. 1.20: Rectilinear grid.

A rectilinear grid, such as Fig. 1.20, defines its topology implicitly and point coordinates semi-implicitly. To fully
define the mesh for a rectilinear grid, VTK uses the following:

• Extents - These define the minimum and maximum indices in each direction. For example, a rectilinear grid of
extents (0, 9), (0, 19), (0, 29) has 10 points in the x-direction, 20 points in the y-direction, and 30 points in the
z-direction. The total number of points is 10× 20× 30.

• Three arrays defining coordinates in the x-, y- and z-directions - These arrays are of length 𝑛𝑝𝑡𝑠𝑥, 𝑛𝑝𝑡𝑠𝑦 , and
𝑛𝑝𝑡𝑠𝑧 . This is a significant savings in memory, as the total memory used by these arrays is 𝑛𝑝𝑡𝑠𝑥+𝑛𝑝𝑡𝑠𝑦+𝑛𝑝𝑡𝑠𝑧
rather than 𝑛𝑝𝑡𝑠𝑥 × 𝑛𝑝𝑡𝑠𝑦 × 𝑛𝑝𝑡𝑠𝑧 .

The coordinate of each point is defined as follows:

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = (𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒_𝑎𝑟𝑟𝑎𝑦𝑥(𝑖), 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒_𝑎𝑟𝑟𝑎𝑦𝑦(𝑗), 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒_𝑎𝑟𝑟𝑎𝑦𝑧(𝑘)).

Note that the generic VTK interface for all datasets uses a flat index. The (𝑖, 𝑗, 𝑘) index can be converted to this flat
index as follows: 𝑖𝑑𝑥_𝑓𝑙𝑎𝑡 = 𝑘 × (𝑛𝑝𝑡𝑠𝑥 × 𝑛𝑝𝑡𝑠𝑦) + 𝑗 × 𝑛𝑝𝑡𝑟𝑥 + 𝑖.

A rectilinear grid consists of cells of the same type. This type is determined by the dimensionality of the dataset (based
on the extents) and can either be vertex (0D), line (1D), pixel (2D), or voxel (3D).

Curvilinear grid (structured grid)

A curvilinear grid, such as Fig. 1.21, defines its topology implicitly and point coordinates explicitly. To fully define
the mesh for a curvilinear grid, VTK uses the following:

• Extents - These define the minimum and maximum indices in each direction. For example, a curvilinear grid of
extents (0, 9), (0, 19), (0, 29) has 10× 20× 30 points regularly defined over a curvilinear mesh.

• An array of point coordinates - This array stores the position of each vertex explicitly.

The coordinate of each point is defined as follows: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒_𝑎𝑟𝑟𝑎𝑦(𝑖𝑑𝑥_𝑓𝑙𝑎𝑡). The (𝑖, 𝑗, 𝑘) index
can be converted to this flat index as follows: 𝑖𝑑𝑥_𝑓𝑙𝑎𝑡 = 𝑘 × (𝑛𝑝𝑡𝑠𝑥 × 𝑛𝑝𝑡𝑠𝑦) + 𝑗 × 𝑛𝑝𝑡𝑠𝑥 + 𝑖.

A curvilinear grid consists of cells of the same type. This type is determined by the dimensionality of the dataset (based
on the extents) and can either be vertex (0D), line (1D), quad (2D), or hexahedron (3D).

1.3. Understanding Data 33

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.21: Curvilinear or structured grid.

AMR dataset

Fig. 1.22: AMR dataset.

VTK natively supports Berger-Oliger type AMR (Adaptive Mesh Refinement) datasets, as shown in Fig. 1.22. An AMR
dataset is essentially a collection of uniform rectilinear grids grouped under increasing refinement ratios (decreasing
spacing). VTK’s AMR dataset does not force any constraint on whether and how these grids should overlap. However,
it provides support for masking (blanking) sub-regions of the rectilinear grids using an array of bytes. This allows
VTK to process overlapping grids with minimal artifacts. VTK can automatically generate the masking arrays for
Berger-Oliger compliant meshes.

34 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Unstructured grid

Fig. 1.23: Unstructured grid.

An unstructured grid, such as Fig. 1.23, is the most general primitive dataset type. It stores topology and point co-
ordinates explicitly. Even though VTK uses a memory-efficient data structure to store the topology, an unstructured
grid uses significantly more memory to represent its mesh. Therefore, use an unstructured grid only when you cannot
represent your dataset as one of the above datasets. VTK supports a large number of cell types, all of which can exist
(heterogeneously) within one unstructured grid. The full list of all cell types supported by VTK can be found in the
file vtkCellType.h in the VTK source code. Here is the list of cell types as of when this document was written:

1.3. Understanding Data 35

ParaView Users Guide Documentation, Release 5.8.1

VTK_EMPTY_CELL VTK_POLYGON
VTK_VERTEX VTK_PIXEL
VTK_POLY_VERTEX VTK_QUAD
VTK_LINE VTK_TETRA
VTK_POLY_LINE VTK_VOXEL
VTK_TRIANGLE VTK_HEXAHEDRON
VTK_TRIANGLE_STRIP VTK_WEDGE
VTK_PYRAMID VTK_PARAMETRIC_CURVE
VTK_PENTAGONAL_PRISM VTK_PARAMETRIC_SURFACE
VTK_HEXAGONAL_PRISM VTK_PARAMETRIC_TRI_SURFACE
VTK_QUADRATIC_EDGE VTK_PARAMETRIC_QUAD_SURFACE
VTK_QUADRATIC_TRIANGLE VTK_PARAMETRIC_TETRA_REGION
VTK_QUADRATIC_QUAD VTK_PARAMETRIC_HEX_REGION
VTK_QUADRATIC_POLYGON VTK_HIGHER_ORDER_EDGE
VTK_QUADRATIC_TETRA VTK_HIGHER_ORDER_TRIANGLE
VTK_QUADRATIC_HEXAHEDRON VTK_HIGHER_ORDER_QUAD
VTK_QUADRATIC_WEDGE VTK_HIGHER_ORDER_POLYGON
VTK_QUADRATIC_PYRAMID VTK_HIGHER_ORDER_TETRAHEDRON
VTK_BIQUADRATIC_QUAD VTK_HIGHER_ORDER_WEDGE
VTK_TRIQUADRATIC_HEXAHEDRON VTK_HIGHER_ORDER_PYRAMID
VTK_QUADRATIC_LINEAR_QUAD VTK_HIGHER_ORDER_HEXAHEDRON
VTK_QUADRATIC_LINEAR_WEDGE VTK_LAGRANGE_CURVE
VTK_BIQUADRATIC_QUADRATIC_WEDGE VTK_LAGRANGE_TRIANGLE
VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON VTK_LAGRANGE_QUADRILATERAL
VTK_BIQUADRATIC_TRIANGLE VTK_LAGRANGE_TETRAHEDRON
VTK_CUBIC_LINE VTK_LAGRANGE_HEXAHEDRON
VTK_CONVEX_POINT_SET VTK_LAGRANGE_WEDGE
VTK_POLYHEDRON VTK_LAGRANGE_PYRAMID

Many of these cell types are straightforward. For details, see the VTK documentation.

Polygonal grid (polydata)

Fig. 1.24: Polygonal grid.

A polydata, such as Fig. 1.24, is a specialized version of an unstructured grid designed for efficient rendering. It
consists of 0D cells (vertices and polyvertices), 1D cells (lines and polylines), and 2D cells (polygons and triangle

36 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

strips). Certain filters that generate only these cell types will generate a polydata. Examples include the Contour and
Slice filters. An unstructured grid, as long as it has only 2D cells supported by polydata, can be converted to a polydata
using the Extract Surface Filter . A polydata can be converted to an unstructured grid using Clean to Grid .

Table

Fig. 1.25: Table

A table, such as Fig. 1.25, is a tabular dataset that consists of rows and columns. All chart views have been designed
to work with tables. Therefore, all filters that can be shown within the chart views generate tables. Also, tables can be
directly loaded using various file formats such as the comma-separated values format. Tables can be converted to other
datasets as long as they are of the right format. Filters that convert tables include Table to Points and Table to
Structured Grid .

Multiblock dataset

Fig. 1.26: Multiblock dataset.

You can think of a multi-block dataset (Fig. 1.26) as a tree of datasets where the leaf nodes are simple datasets. All of the
data types described above, except AMR, are simple datasets. Multi-block datasets are used to group together datasets
that are related. The relation between these datasets is not necessarily defined by ParaView. A multi-block dataset
can represent an assembly of parts or a collection of meshes of different types from a coupled simulation. Multi-block
datasets can be loaded or created within ParaView using the Group filter. Note that the leaf nodes of a multi-block
dataset do not all have to have the same attributes. If you apply a filter that requires an attribute, it will be applied only
to blocks that have that attribute.

1.3. Understanding Data 37

ParaView Users Guide Documentation, Release 5.8.1

Multipiece dataset

Fig. 1.27: Multipiece dataset.

Multi-piece datasets, such as Fig. 1.27, are similar to multi-block datasets in that they group together simple datasets.
There is one key difference. Multi-piece datasets group together datasets that are part of a whole mesh - datasets
of the same type and with the same attributes. This data structure is used to collect datasets produced by a parallel
simulation without having to append the meshes together. Note that there is no way to create a multi-piece dataset
within ParaView. It can only be created by using certain readers. Furthermore, multi-piece datasets act, for the most
part, as simple datasets. For example, it is not possible to extract individual pieces or to obtain information about them.

1.3.2 Getting data information in paraview

In the visualization pipeline (Section 1.1.2), sources, readers, and filters are all producing data. In a VTK-based
pipeline, this data is one of the types discussed. Thus, when you create a source or open a data file in paraview
and hit Apply , data is being produced. The Information panel and the Statistics Inspector panel can be used
to inspect the characteristics of the data produced by any pipeline module.

The Information panel

The Information panel provides summary information about the data produced by the active source. By default, this
panel is tucked under a tab below the Properties panel. You can toggle its visibility using View > Information.

The Information panel shows the data information for the active source. Thus, similar to the Properties panel, it
changes when the active source is changed (e.g., by changing the selection in the Pipeline Browser). One way to
think of this panel is as a panel showing a summary for the data currently produced by the active source. Remember
that a newly-created pipeline module does not produce any data until you hit Apply . Thus, valid information for a
newly-created source will be shown on this panel only after that Apply . Similarly, if you change properties on the
source and hit Apply , this panel will reflect any changes in data characteristics. Additionally, for temporal pipelines,
this panel shows information for the current timestep alone (except as noted). Thus, as you step through timesteps in a
temporal dataset, the information displayed will potentially change, and the panel will reflect those changes.

Did you know?

Any text on this panel is copy-able. For example, if want to copy the number of points value to use it as a property
value on the Properties panel, simply double-click on the number or click-and-drag to select the number and use the
common keyboard shortcut CTRL + kbd:C (or + C) to copy that value to the clipboard. Now, you can paste it in an input

38 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.28: The Information panel in paraview showing data summaries for the active source.

1.3. Understanding Data 39

ParaView Users Guide Documentation, Release 5.8.1

widget in paraview or any other application, such as an editor, by using CTRL + V (or + V) or the application-specific
shortcut for pasting text from the clipboard. The same is true for numbers shown in lists, such as the Data Ranges .

The panel itself is comprised of several groups of information. Groups may be hidden based on the type of pipeline
module or the type of data being produced.

The file Properties group is shown for readers with information about the file that is opened. For a temporal file
series, as you step through each time step, the file name is updated to point to the name of the file in the series that
corresponds to the current time step.

The Statistics group provides a summary of the dataset produced including its type, its number of cells and points
(or rows and columns in cases of Tabular datasets), and an estimate of the memory used by the dataset. This number
only includes the memory space needed to save the data arrays for the dataset. It does not include the memory space
used by the data structures themselves and, hence, must only be treated as an estimate.

The Data Arrays group lists all of the available point, cells, and field arrays, as well as their types and ranges for the
current time step. The Current data time field shows the time value for the current timestep as a reference. As with

other places in paraview, the icons , , and are used to indicate cell, point, and field data arrays. Since data
arrays can have multiple components, the range for each component of the data array is shown.

Bounds shows the spatial bounds of the datasets in 3D Cartesian space. This will be unavailable for non-geometric
datasets such as tables.

For reader modules, the Time group shows the available time steps and corresponding time values provided by the file.

For structured datasets such as uniform rectilinear grids or curvilinear grids, the Extents group is shown that displays
the structured extents and dimensions of the datasets.

All of the summary information discussed so far provides a synopsis of the entire dataset produced by the pipeline
module, including across all ranks (which will become clearer once we look at using ParaView for parallel data pro-
cessing). In cases of composite datasets, such as mutliblock datasets or AMR datasets, recall that these are datasets
that are comprised of other datasets. In such cases, these are summaries over all the blocks in the composite dataset.
Every so often, you will notice that the Data Arrays table lists an array with the suffix (partial) (Figure Fig. 1.29).
Such arrays are referred to as partial arrays. Partial arrays is a term used to refer to arrays that are present on some
non-composite blocks or leaf nodes in a composite dataset, but not all. The (partial) suffix to indicate partial arrays
is also used by paraview in other places in the UI.

Fig. 1.29: The Data Arrays section on Information panel showing partial arrays. Partial arrays are arrays that
present on certain blocks in a composite dataset, but not all.

While summaries over all of the datasets in the composite dataset are useful, you may also want to look at the data
information for individual blocks. To do so, you can use the Data Hierarchy group, which appears when summarizing
composite datasets. The Data Hierarchy widget shows the structure or hierarchy of the composite dataset (Figure
Fig. 1.30). The Information panel switches to showing the summaries for the selected sub-tree. By default, the

40 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

root element will be selected. You can now select any block in the hierarchy to view the summary limited to just that
sub-tree.

Fig. 1.30: The Data Hierarchy section on the Information panel showing the composite data hierarchy. Selecting
a particular block or subtree in this widget will result in the reset of the Information panel showing summaries for
that block or subtree alone.

Did you know?

Memory information shown on the Information panel and the Statistics Inspector should only be used as an
approximate reference and does not translate to how much memory the data produced by a particular pipeline module
takes. This is due to the following factors:

• The size does not include the amount of memory needed to build the data structures to store the data arrays.
While, in most cases, this is negligible compared to that of the data arrays, it can be nontrivial, especially when
dealing with deeply-nested composite datasets.

• Several filters such as Calculator and Shrink simply pass input data arrays through, so there’s no extra space
needed for those data arrays that are shared with the input. The memory size numbers shown, however, do not
take this into consideration.

If you need an overview of how much physical memory is being used by ParaView in its current state, you can use the
Memory Inspector (Section 2.7).

The Statistics Inspector panel

The Information panel shows data information for the active source. If you need a quick summary of the data
produced by all the pipeline modules, you can use the Statistics Inspector panel. It’s accessible from Views >
Statistics Inspector.

All of the information on this panel is also presented on the Information panel, except Geometry Size . This
corresponds to how much memory is needed for the transformed dataset used for rendering in the active view. For
example, to render a 3D dataset as a surface in the 3D view, ParaView must extract the surface mesh as a polydata.
Geometry Size represents the memory needed for this polydata with the same memory-size-related caveats as with
the Information panel.

1.3. Understanding Data 41

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.31: The Statistics Inspector panel in paraview showing summaries for all pipeline modules.

1.3.3 Getting data information in pvpython

When scripting with ParaView, you will often find yourself needing information about the data. While paraview sets
up filter properties and color tables automatically using the information from the data, you must do that explicitly when
scripting.

In pvpython, for any pipeline module (sources, readers, or filters), you can use the following ways to get information
about the data produced.

>>> from paraview.simple import *
>>> reader = OpenDataFile(".../ParaViewData/Data/can.ex2")

We need to update the pipeline. Otherwise, all of the data
information we get will be from before the file is actually
read and, hence, will be empty.
>>> UpdatePipeline()

>>> dataInfo = reader.GetDataInformation()

To get the number of cells or points in the dataset:
>>> dataInfo.GetNumberOfPoints()
10088
>>> dataInfo.GetNumberOfCells()
7152

You can always nest the call, e.g.:
>>> reader.GetDataInformation().GetNumberOfPoints()
10088
>>> reader.GetDataInformation().GetNumberOfCells()
7152

Use source.PointData or source.CellData to get information about
point data arrays and cell data arrays, respectively.

Let's print the available point data arrays.
>>> reader.PointData[:]
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeId, Array: VEL]

Similarly, for cell data arrays:
>>> reader.CellData[:]
[Array: EQPS, Array: GlobalElementId, Array: ObjectId, Array: PedigreeElementId]

PointData (and CellData) is a map or dictionary where the keys are the names of the arrays, and the values are
objects that provide more information about each of the arrays. In the rest of this section, anything we demonstrate on
PointData is also applicable to CellData .

42 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Let's get the number of available point arrays.
>>> len(reader.PointData)
5

Print the names for all available point arrays.
>>> reader.PointData.keys()
['ACCL', 'DISPL', 'GlobalNodeId', 'PedigreeNodeId', 'VEL']

>>> reader.PointData.values()
[Array: ACCL, Array: DISPL, Array: GlobalNodeId, Array: PedigreeNodeId, Array: VEL]

To test if a particular array is present:
>>> reader.PointData.has_key("ACCL")
True

>>> reader.PointData.has_key("--non-existent-array--")
False

From PointData (or CellData), you can get access to an object that provides information for each of the arrays. This
object gives us methods to get data ranges, component counts, tuple counts, etc.

Let's get information about 'ACCL' array.
>>> arrayInfo = reader.PointData["ACCL"]
>>> arrayInfo.GetName()
'ACCL'

To get the number of components in each tuple and the number
of tuples in the data array:
>>> arrayInfo.GetNumberOfTuples()
10088
>>> arrayInfo.GetNumberOfComponents()
3

Alternative way for doing the same:
>>> reader.PointData["ACCL"].GetNumberOfTuples()
10088
>>> reader.PointData["ACCL"].GetNumberOfComponents()
3

To get the range for a particular component, e.g. component 0:
>>> reader.PointData["ACCL"].GetRange(0)
(-4.965284006175352e-07, 3.212448973499704e-07)

To get the range for the magnitude in cases of multi-component arrays
use -1 as the component number.
>>> reader.PointData["ACCL"].GetRange(-1)
(0.0, 1.3329898584157294e-05)

To determine the data data type for this array:
>>> from paraview import vtk
>>> reader.PointData["ACCL"].GetDataType() == vtk.VTK_DOUBLE
True
The paraview.vtk module provides access to these constants such as

(continues on next page)

1.3. Understanding Data 43

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

VTK_DOUBLE, VTK_FLOAT, VTK_INT, etc.

Likewise, to test the dataset type, itself:
>>> reader.GetDataInformation().GetDataSetType() == \

vtk.VTK_MULTIBLOCK_DATA_SET
True

Here’s a sample script to iterate over all point data arrays and print their magnitude ranges:

>>> def print_point_data_ranges(source):
... """Prints array ranges for all point arrays"""
... for arrayInfo in source.PointData:
... # get the array's name
... name = arrayInfo.GetName()
... # get magnitude range
... range = arrayInfo.GetRange(-1)
... print "%s = [%.3f, %.3f]" % (name, range[0], range[1])

Let's call this function on our reader.
>>> print_point_data_ranges(reader)
ACCL = [0.000, 0.000]
DISPL = [0.000, 0.000]
GlobalNodeId = [1.000, 10088.000]
PedigreeNodeId = [1.000, 10088.000]
VEL = [0.000, 5000.000]

Did you know?

The example scripts in this section all demonstrated how to obtain information about the data such as the number of
points and cells, data bounds, and array ranges. However, what they do not show is how to access the raw data itself.
To see how to obtain the full data, please see Section 2.6.10.

1.4 Displaying data

The goal of any visualization process is to produce visual representations of the data. The visual representations are
shown in modules called views. Views provide the canvas on which to display such visual representations, as well as
to dictate how these representations are generated from the raw data. The role of the visualization pipeline is often to
transform the data so that relevant information can be represented in these views.

Referring back to the visualization pipeline from Section 1.1.2, views are sinks that take in input data but do not produce
any data output (i.e., one cannot connect other pipeline modules such as filters to process the results in a view). However,
views often provide mechanisms to save the results as images or in other formats including PDF, VRML, and X3D.

Different types of views provide different ways of visualizing data. These can be broadly grouped as follows:

• Rendering Views are views that render geometries or volumes in a graphical context. The Render View is one
such view. Other Render View-based views, such as Slice View and Quad View , extend the basic render view
to add the ability to add mechanisms to easily inspect slices or generate orthogonal views.

• Chart Views cover a wide array of graphs and plots used for visualizing non-geometric data. These include
views such as line charts (Line Chart View), bar charts (Bar Chart View), bag charts (Bag Chart View
), parallel coordinates (Parallel Coordinates View), etc.

44 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• Comparative Views are used to quickly generate side-by-side views for parameter study, i.e., to visualize the
effects of parameter changes. Comparative variants of Render View and several types of the Chart Views are
available in ParaView.

In this chapter, we take a close look at the various views available in ParaView and how to use these views for displaying
data.

1.4.1 Multiple views

Fig. 1.32: Using multiple views in paraview to generate different types of visualizations from a dataset.

With multiple types of views comes the need for creating and viewing multiple views at the same time. In this section,
we look at how you can create multiple views and lay them out.

Did you know?

Multiple views were first supported in ParaView 3.0. Before that, all data was shown in a single 3D render view,
including line plots!

Multiple views in paraview

paraview shows all views in the central part of the application window. When paraview starts up, the Render View
is created and shown in the application window by default.

New views can be created by splitting the view frame using the Split View controls at the top-right corner of the
view frame. Splitting a view splits the view into two equal parts, either vertically or horizontally, based on the button
used for the split. On splitting a view, an empty frame with buttons for all known types of views is shown. Simply click
on one of those buttons to create a new view of a chosen type.

You can move views by clicking and dragging the title bar for the view (or empty view frame) and dropping it on the
title bar on another view (or empty view frame). This will swap the positions of the two views.

Similar to the notion of active source, there is a notion of active view . Several panels, toolbars, and menus will update
based on the active view. The Display properties section on the Properties panel, for example, reflects the display
properties of the active source in the active view. Similarly, the eyeball icons in the Pipeline Browser show the

1.4. Displaying data 45

ParaView Users Guide Documentation, Release 5.8.1

visibility status of the pipeline module in the active view. Active view is marked in the UI by a blue border around the
view frame. Only one view can be active at any time in the application.

Besides being able to create multiple views and laying them out in a pane, paraview also supports placing views in
multiple layouts under separate tabs. To create new tabs, use the button in the tab bar. You can close a tab, which
will destroy all views laid out in that tab, by clicking on the button. To pop out an entire tab as a separate window,

use the button on the tab bar.

The active view is always present in the active tab. Thus, if you change the active tab, the active view will also be
changed to be a view in the active tab layout. Conversely, if the active view is changed (by using the Python Shell ,
for example), the active tab will automatically be updated to be the tab that contains the active view.

Did you know?

You can make the views fullscreen by using View > Fullscreen. To return back to the normal mode, use the Esc key.

Multiple views in pvpython

In pvpython, one can create new views using the CreateView function or its variants, e.g., CreateRenderView .

>>> from paraview.simple import *
>>> view = CreateRenderView()
Alternatively, use CreateView.
>>> view = CreateView("RenderView")

When a new view is created, it is automatically made active. You can manually make a view active by using the
SetActiveView function. Several of the functions available in pvpython will use the active view when no view is
passed as an argument to the function.

Create a view
>>> view1 = CreateRenderView()
Create a second view
>>> view2 = CreateRenderView()

Check if view2 is the active view
>>> view2 == GetActiveView()
True

Make view1 active
>>> SetActiveView(view1)
>>> view1 == GetActiveView()
True

When using Python Shell in paraview, if you create a new view, it will automatically be placed in the active tab
by splitting the active view. You can manually control the layout and placement of views from Python too, using the
layout API.

In Python, each tab corresponds to a layout.

To get exisiting tabs/layouts
>>> layouts = GetLayouts()
>>> print(layouts)
{('ViewLayout1', '264'): <paraview.servermanager.ViewLayout object at 0x2e5b7d0>}

(continues on next page)

46 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

To get layout corresponding to a particular view
>>> print(GetLayout(view))
<paraview.servermanager.ViewLayout object at 0x2e5b7d0>

If view is not specified, active view is used
>>> print(GetLayout())
<paraview.servermanager.ViewLayout object at 0x2e5b7d0>

To create a new tab
>>> new_layout = servermanager.misc.ViewLayout(registrationGroup="layouts")

To split the cell containing the view, either horizontally or vertically
>>> view = GetActiveView()
>>> layout = GetLayout(view)
>>> locationId = layout.SplitViewVertical(view=view,

fraction=0.5)
fraction is optional, if not specified the frame is split evenly.

To assign a view to a particular cell.
>>> view2 = CreateRenderView()
>>> layout.AssignView(locationId, view2)

1.4.2 View properties

Just like parameters on pipeline modules, such as readers and filters, views provide parameters that can be used for
customizing the visualization such as changing the background color for rendering views and adding title texts for
chart views. These parameters are referred to as View Properties and are accessible from the Properties panel in
paraview.

View properties in paraview

Similar to properties on pipeline modules like sources and readers, view properties are accessible from the Properties
panel. These are grouped under the View section. When the active view is changed, the Properties panel updates to
show the view properties for the active view. Unlike pipeline modules, however, when you change the view properties,
they affect the visualization immediately, without use of the Apply button.

Did you know?

It may seem odd that View and Display properties on the Properties panel don’t need to be Apply -ed to take effect,
while properties on pipeline modules like sources, readers and filter require you to hit the Apply button.

To understand the reasoning behind that, we need to understand why the Apply action is needed in the first place.
Generally, executing a data processing filter or reader is time consuming on large datasets. If the pipeline module
keeps on executing as you are changing the parameter, the user experience will quickly deteriorate, since the pipeline
will keep on executing with intermediate (and potentially invalid) property values. To avoid this, we have the Apply
action. This way, you can set up the pipeline properties to your liking and then trigger the potentially time consuming
execution.

Since the visualization process in general focuses on reducing data to generate visual representations, the rendering
(broadly speaking) is less time- intensive than the actual data processing. Thus, changing properties that affect rendering
are not as compute-intensive as transforming the data itself. For example, changing the color on a surface mesh is not

1.4. Displaying data 47

ParaView Users Guide Documentation, Release 5.8.1

as expensive as generating the mesh in the first place. Hence, the need to Apply such properties becomes less relevant.
At the same time, when changing display properties such as opacity, you may want to see the result as you change the
property to decide on the final value. Hence, it is desirable to see the updates immediately.

Of course, you can always enable Auto Apply to have the same immediate update behavior for all properties on the
Properties panel.

View properties in pvpython

In pvpython, once you have access to the view, you can directly change view properties on the view object. There are
several ways to get access to the view object.

1. Save reference when a view is created
>>> view = CreateView("RenderView")

2. Get reference to the active view.
>>> view = GetActiveView()

The properties available on the view will change based on the type of the view. You can use the help function to
discover available properties.

>>> view = CreateRenderView()
>>> help(view)

Help on RenderView in module paraview.servermanager object:

class RenderView(Proxy)
| View proxy for a 3D interactive render
| view.
|
| --
| Data descriptors defined here:
|
| CenterAxesVisibility
| Toggle the visibility of the axes showing the center of
| rotation in the scene.
|
| CenterOfRotation
| Center of rotation for the interactor.
|
...

Once you have a reference to the view, you can then get/set the properties.

Get the current value
>>> print(view.CenterAxesVisibility)
1

Change the value
>>> view.CenterAxesVisibility = 0

48 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.4.3 Display properties

Display properties refers to available parameters that control how data from a pipeline module is displayed in a view,
e.g., choosing to view the output mesh as a wireframe, coloring the mesh using a data attribute, and selecting which
attributes to plot in chart view. A set of display properties is associated with a particular pipeline module and view.
Thus, if the data output from a source is shown in two views, there will be two sets of display properties used to control
the appearance of the data in each of the two views.

Display properties in paraview

Display properties are accessible from the Display section on the Properties panel. When the active source or
active view changes, this section updates to show the display properties for the active source in the active view, if
available. If the active source produces data that cannot be shown (or has never been shown) in the view, then the
Display properties section may be empty.

Similar to view properties, display property changes are immediately applied, without requiring the use of the Apply
button.

Display properties in pvpython

To access display properties in pvpython, you can use SetDisplayProperties and GetDisplayPropertymethods.

Using SetDisplayProperties/GetDisplayProperties to access the display
properties for the active source in the active view.

>>> print(GetDisplayProperties("Opacity"))
1.0

>>> SetDisplayProperties(Opacity=0.5)

Alternatively, you can get access to the display properties object using GetDisplayProperties and then changing
properties directly on the object.

Get display properties object for the active source in the active view.
>>> disp = GetDisplayProperties()

You can also save the object returned by Show.
>>> disp = Show()

Now, you can directly access the properties.
>>> print(disp.Opacity)
0.5

>>> disp.Opacity = 0.75

As always, you can use the help method to discover available properties on a display object.

>>> disp = Show()

>>> help(disp)
>>> help(a)
Help on GeometryRepresentation in module paraview.servermanager object:

(continues on next page)

1.4. Displaying data 49

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

class GeometryRepresentation(SourceProxy)
| ParaView`s default representation for showing any type of
| dataset in the render view.
|
| Method resolution order:
| GeometryRepresentation
| SourceProxy
| Proxy
| __builtin__.object
|
| --
| Data descriptors defined here:
|
| ...
|
| CenterStickyAxes
| Keep the sticky axes centered in the view window.
|
| ColorArrayName
| Set the array name to color by. Set it to empty string
| to use solid color.
|
| ColorAttributeType
| ...

1.4.4 Render View

Render View is the most commonly used view in ParaView. It is used to render geometries and volumes in a 3D
scene. This is the view that you typically think of when referring to 3D visualization. The view relies on techniques to
map data to graphics primitives such as triangles, polygons, and voxels, and it renders them in a scene.

Most of the scientific datasets discussed in Section 1.3.1 are comprised of meshes. These meshes can be mapped to
graphics primitives using several of the established visualization techniques. (E.g., you can compute the outer surface
of these meshes and then render that surface as filled polygons, you can just render the edges, or you can render the
data as a nebulous blob to get a better understanding of the internal structure in the dataset.) Plugins, like Surface
LIC , can provide additional ways of rendering data using advanced techniques that provide more insight into the data.

If the dataset doesn’t represent a mesh, e.g., a table (Section 1.3.1), you cannot directly show that data in this view.
However, in such cases, it may be possible to construct a mesh by mapping columns in the table to positions to construct
a point cloud, for example.

Understanding the rendering process

Render View uses data processing techniques to map raw data to graphics primitives, which can then be rendered in
a 3D scene. These mapping techniques can be classified as follows:

• Surface rendering methods provide general rendering by rendering a surface mesh for the dataset. For polygonal
datasets (Section 1.3.1), this is simply the raw data. In cases of other datasets including structured (Section 1.3.1,
Section 1.3.1, Section 1.3.1) and unstructured (Section 1.3.1) grids, this implies extracting a surface mesh for
all external faces in the dataset and then rendering that mesh. The surface mesh itself can then be rendered as a
filled surface or as a wireframe simply showing the edges, etc.

50 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.33: paraview using Render View to generate 3D visualizations from a dataset.

• Slice rendering is available for uniform rectilinear grid datasets (Section 1.3.1) where the visualization is gen-
erated by simply rendering an orthogonal slice through the dataset. The slice position and alignment can be
selected using the display properties.

• Volume rendering generates rendering by tracing a ray through the dataset and accumulating intensities based on
the color and opacity transfer functions set.

Each of these techniques are referred to as representations. When available, you can change the representation type
from the display properties on the Properties panel or using the Representation Toolbar .

Render View in paraview

Creating a Render View

Unless you changed the default setting, a new Render View will be created when paraview starts up or connects to
a new server. To create a Render View in paraview, split or close a view, and select the Render View button. You
can also convert a view to a Render View (or any other type) by right-clicking on the view’s title bar and picking from
the Convert To sub-menu. It simply closes the chosen view and creates a selected view type in its place.

You can use the Pipeline Browser to control the visibility of datasets produced by pipeline modules in this view.
The eyeball icons reflect the visibility state. Clicking on the eyeball icon will toggle the visibility state. If no eyeball
icon is shown, it implies that the pipeline module doesn’t produce a data type that can be directly shown in the active
view, e.g., if the module produced a table, then when Render View is active, there will not be any eyeball icon next to
that module.

1.4. Displaying data 51

ParaView Users Guide Documentation, Release 5.8.1

Interactions

You can interact with the Render View to move the camera in the scene for exploring the visualization and setting up
optimal viewing angles. Each of the three mouse buttons, combined with keyboard modifier keys (CTRL or , and),
move the camera differently. The interaction mode can be changed from the Camera tab in the Settings dialog, which
is accessible from Tools > Settings (or ParaView > Preferences on macOS). There are six interaction modes available
in ParaView:

• Pan for translating the camera in the view plane.

• Zoom for zooming in or out of the center of the view.

• Roll for rolling the camera.

• Rotate for rotating the camera around the center of rotation.

• Zoom To Mouse for zooming in or out of the projected point under the mouse position.

• Multi Rotate for allowing azimuth and elevation rotations by dragging from the middle of the view and rolls by
dragging from the edges.

The default interactions options are as follows:

Modifier Left Button Middle Button Right Button
Rotate Pan Zoom
Roll Rotate Pan

CTRL or Zoom Rotate Zoom To Mouse

Usually in ParaView, you are interacting with a 3D scene. However, there are cases when you are working with a 2D
dataset such as a slice plane or a 2D image. In such cases, paraview provides a separate set of interaction options
suitable for 2D interactions. You can toggle between the default 3D interaction options and 2D interaction options by
clicking the 2D or 3D button in the view toolbar. The default interaction options for 2D interactions are as follows:

Modifier Left Button Middle Button Right Button
Pan Roll Zoom
Zoom Zoom Zoom To Mouse

CTRL or Roll Pan Rotate

By default, ParaView will determine whether your data is 2D or 3D when loading the data and will set the interaction
mode accordingly. This behavior can be changed in the Settings dialog by changing the Default Interaction
Mode setting under the Render View tab. The default setting is “Automatic, based on the first time step”, but the
setting can be changed to “Always 2D” or “Always 3D” in case you wish to force the interaction mode.

View properties

Several of the view properties in Render View control the annotations shown in the view (Fig. 1.34).

Axes Grid refers to an annotation axis rendered around all datasets in the view (Fig. 1.35). You use the checkbox next
to the Edit Axis Grid button to show or hide this annotation. To control the annotation formatting, labels, etc., click
on the Edit Axes Grid... button. The Axes Grid is described in Chapter Section 2.10.

The Center axes refers to axes rendered in the scene positioned as the center of rotation, i.e., the location is space around
which the camera revolves during Rotate camera interaction. Center Axes Visibility controls the visibility of
the center axes.

The Orientation axes is the widget shown at the lower-left corner by default, which is used to get a sense for the
orientation of the scene. The properties grouped under the Orientation Axes group allow you to toggle the visibility

52 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.34: The Properties panel showing view properties for Render View .

Fig. 1.35: Axes Grid is used to annotate data bounds in Render View .

1.4. Displaying data 53

ParaView Users Guide Documentation, Release 5.8.1

and the interactivity of this widget. When interactivity is enabled, you can click and drag this widget to the location of
your choosing in the scene.

You can also change the Background used for this view. You can either set it as a Single color or as a Gradient
comprised of two colors, or you can select an Image (or texture) to use as the background.

There are two advanced properties you may wish to set: hidden line removal and camera parallel projection. The
Hidden Line Removal option can be enabled to hide lines that would be occluded by a solid object when drawing
objects in a Wireframe representation. If you want to render your data using parallel projection instead of the default
perspective projection you can check the Camera Parallel Projection checkbox.

Display properties

One of the first (and probably the most often used) display properties is Representation . Representation allows
you to pick one of the mapping modes. The options available depend on the data type, as well as the plugins loaded.
While all display properties are accessible from the advanced view for the Properties panel, certain properties may
be shown/hidden from the default view based on the chosen representation type.

Fig. 1.36: Different renderings generated by rendering data produced by the Wavelet source as outline, points, slice,
surface, surface with edges, and volume.

The Outline representation can be used to render an outline for the dataset. This is arguably the fastest way of
rendering the dataset since only the bounding box is rendered. Scalar coloring options, i.e., selecting an array with
which to color, has no effect on this representation type. You can still, however, change the Solid Color to use as
well as the Opacity . To change the color, select Solid Color in the combo-box under Coloring , and then click
Edit to pick the color to use. To change the opacity, simply change the Opacity slider. 0 implies total transparency
and, hence, invisiblity, while 1 implies totally opacity.

54 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Did you know?

Rendering translucent data generally adds computational costs to the rendering process. Thus, when rendering large
datasets, you may want to leave changing opacities to anything less than 1 to the very end, after having set up the
visualization. In doing so, you avoid translucent geometries during exploration, but use them for generating images or
screenshots for presentations and publications.

Points , Surface , Surface With Edges , and Wireframe rely on extracting the surface mesh from the dataset and
then rendering that either as a collection of points, as solid surface, as solid surface with cell boundaries highlighted,
or as a wireframe of cell boundaries only. Feature Edges is a subset of Wireframe consisting of prominent edges
on the surface such as edges between cells that form a sharp angle or edges with only one adjacent cell. For these
representations, you can either set a single solid color to use, as with Outline , or select a data array to use for scalar
coloring (also known as pseudocoloring).

Two other representations are available for most datasets. 3D Glyphs draws a copy of a 3D geometry (e.g., arrow, cone,
or sphere, etc.), or glyph, at a subset of points in the dataset. These glyphs can be set to a single color or pseudocolored
by a data array. The Point Gaussian representation is similar, but instead of drawing 3D geometry at every point, it
draws a 2D image sprite that may have transparency. The image drawn can be one of several predefined image sprites
such as Gaussian Blur , Sphere , Black-edged circle , Plain cirlce , Triangle , or Square outline , or
a custom sprite can be defined with custom GLSL shader code.

Did you know?

For visualizations that feature 3D glyphs, it is typically much faster to use the 3D Glyph representation rather than
the Glyph filter. This is because the glyph representation draws the same geometry at many different locations (a
graphics technique called geometry instancing) while the Glyph filter makes many copies of the same source geometry
and renders the resulting mesh in its entirety. Generating all the glyphs and rendering them takes potentially a lot of
memory and is typically slower to render, so you should use the 3D Glyph representation when possible.

Next, we will cover each of the property groups available under Display properties. Several of these are marked as

advanced. Accordingly, you may need to either toggle the panel to show advanced properties using the button or
search for it by name using the search box.

Display properties under Coloring allow you to set how the dataset is colored. To select a single solid color to use
to fill the surface or color the wireframe or points, select Solid Color in the combo-box, and then click Edit . That
will pop up the standard color chooser dialog from which you can pick a color to use.

If instead you want to pseudocolor using an attribute array available on the dataset, select that array name from the
combo-box. For multi-component arrays, you can pick a particular component or Magnitude to use for scalar coloring.
ParaView will automatically setup a color transfer function it will use to map the data array to colors. The default range
for the transfer function is set up based on the Transfer Function Reset Mode general setting in the Settings
dialog when the transfer function is first created. If another dataset is later colored by a data array with the same name,
the range of the transfer function will be updated according to the Automatic Rescale Range Mode property in the
Color Map Editor . To reset the transfer function range to the range of the data array in the selected dataset, you can

1.4. Displaying data 55

ParaView Users Guide Documentation, Release 5.8.1

use the Rescale button. Remember that, despite the fact that you can set the scalar array with which to color when
rendering as Outline , the outline itself continues to use the specified solid color.

Scalar Coloring properties are only relevant when you have selected a data array with which to pseudocolor. The
Map Scalars checkbox affects whether a color transfer function should be used (Fig. 1.37). If unchecked, and the data
array can directly be interpreted as colors, then those colors are used directly. If not, the color transfer function will be
used. A data array can be interpreted as colors if, and only if, it is an unsigned char, float, or double array with two,
three, or four components. If the data array is unsigned char, the color values are defined between 0 and 255 while if
the data array is float or double, the color values are expected to be between 0 and 1. Interpolate Scalars Before
Mapping controls how color interpolation happens across rendered polygons. If on, scalars will be interpolated within
polygons, and color mapping will occur on a per-pixel basis. If off, color mapping occurs at polygon points, and colors
are interpolated, which is generally less accurate. Refer to the Kitware blog [PatMarion] for a detailed explanation of
this option.

Fig. 1.37: The Map Scalars property can be used to avoid using a transfer function and directly interpreting the array
values as colors, if possible.

The Polar Axes checkbox toggles polar axes shown around the data. Many parameters can be accessed via an Edit
button alongside it. The parameters include angles, tick range, labels, logarithmic mode, ellipse ratio and more.

Styling properties include Opacity (useful when rendering translucent geometries), Point Size (used to control
size of points rendered with using Points representation), and Line Width (used to control the thickness of lines
when rendering as Wireframe or that of the edges when rendering as Surface With Edges .

Lighting properties affect the shading for rendered surfaces. Interpolation allows you to pick between Flat and
Gouraud shading. Specular , together with Specular Color and Specular Power , affects the shininess of the
surface. Set this to a non-zero value to render shiny, metallic surfaces.

Common Errors

Specular highlights can lead to misinterpretation of scalar values when using scalar coloring, since the color shown
on the shiny part of the surface will not correspond to any color on the color transfer function. Hence, it is generally
advisable to use specular highlights on surfaces colored with a single solid color and not on those using scalar coloring
(or pseudocoloring).

56 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Edge Styling allows you to set the Edge Color with which to color the edges when using Surface With Edges
representation.

Backface Styling provides advanced controls to fine-tune the rendering by controlling front and back faces. A front
face is any mesh face facing the camera, while a back face is the one facing away from the camera. By choosing to
Cull Frontface or Cull Backface , or by selecting a specific representation type to use for the backface, you can
customize your visualizations.

Transforming properties can be used to transform the rendered data in the scene without affecting the raw data itself.
Thus, if you apply filters on the data source, it will indeed be working with the untransformed data. To transform the
data itself, you should use the Transform filter.

1.4. Displaying data 57

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.38: A Polar Axes usage example.

58 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.4. Displaying data 59

ParaView Users Guide Documentation, Release 5.8.1

Several properties are available under the Miscellaneous group. Uncheck the Pickable option if you want the
dataset to be ignored when making selections. If the dataset has a texture coordinates array, you can apply a texture to
the dataset surface using the Texture combo-box. Choose Load to load a texture or apply a previously loaded texture
listed in the combo-box. If your dataset doesn’t have texture coordinates, you can create them by applying one of
Texture Map to Cylinder , Texture Map to Sphere , or Texture Map To Plane filters, or using the filters
Calculator or Programmable Filter .

The Triangulate option is useful for rendering objects with non-convex polygons. It comes with some additional
processing cost for converting polygons to triangles, so it should be used only when necessary.

Fig. 1.39: A dataset made of quadratic tetra hedra displayed with 1, 2, and 3 levels of nonlinear subdivision.

The Nonlinear Subdivision Level is used when rendering datasets with higher- order elements. Use this to set
the subdivision level for triangulating higher order elements. The higher the value, the smoother the edges. This comes
at the cost of more triangles and, hence, potentially, increased rendering time.

The Block Colors Distinct Values sets the number of unique colors to use when coloring multi-block datasets
by block ID. Finally, Use Data Partitions controls whether data is redistributed when it is rendered translucently.
When off (default value), data is repartitioned by the compositing algorithm prior to rendering. This is typically an
expensive operation that slows down rendering. When this option is off, the existing data partitions are used, and the
cost of data restribution is avoided. However, if the partitions are not sortable in back-to-front order, rendering artifacts
may occur.

Volume Rendering options are available if the data can be volume rendered. You can pick a specific type of Volume
Rendering Mode , although the default (Smart) should work in most cases, since it attempts to pick a volume
rendering mode suitable for your data and graphics setup. To enable gradient-based shading, check Shade , if available.

Slicing properties are available when the Slice representation type is present. These allow you to pick the orthogonal
slice plane orientation and slice offset using Slice Direction and the Slice slider.

60 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Render View in pvpython

Creating a Render View

You use CreateRenderView or CreateView functions to create a new instance of a render view.

>>> from paraview.simple import *
>>> view = CreateRenderView()
Alternatively, use CreateView.
>>> view = CreateView("RenderView")

noindent You use Show and Hide to show or hide data produced by a pipeline module in the view.

>>> source = Sphere()
>>> view = CreateRenderView()

Show active source in active view.
>>> Show()

Or specify source and view explicitly.
>>> Show(source, view)

Hide source in active view.
>>> Hide(source)

Interactions

Since pvpython is designed for scripting and batch processing, it has limited support for direct interaction with the
view. To interact with a scene, invoke the Interact function in Python.

Interact()

More often, you will programmatically change the camera as follows:

Get camera from the active view, if possible.
>>> camera = GetActiveCamera()

or, get the camera from a specific render view.
>>> camera = view.GetActiveCamera()

Now, you can use methods on camera to move it around the scene.

Divide the camera's distance from the focal point by the given dolly value.
Use a value greater than one to dolly-in toward the focal point, and use a
value less than one to dolly-out away from the focal point.
>>> camera.Dolly(10)

Set the roll angle of the camera about the direction of projection.
>>> camera.Roll(30)

Rotate the camera about the view up vector centered at the focal point. Note
that the view up vector is whatever was set via SetViewUp, and is not

(continues on next page)

1.4. Displaying data 61

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

necessarily perpendicular to the direction of projection. The result is a
horizontal rotation of the camera.
>>> camera.Azimuth(30)

Rotate the focal point about the view up vector, using the camera's position
as the center of rotation. Note that the view up vector is whatever was set
via SetViewUp, and is not necessarily perpendicular to the direction of
projection. The result is a horizontal rotation of the scene.
>>> camera.Yaw(10)

Rotate the camera about the cross product of the negative of the direction
of projection and the view up vector, using the focal point as the center
of rotation. The result is a vertical rotation of the scene.
>>> camera.Elevation(10)

Rotate the focal point about the cross product of the view up vector and the
direction of projection, using the camera's position as the center of
rotation. The result is a vertical rotation of the camera.
>>> camera.Pitch(10)

Alternatively, you can explicitly set the camera position, focal point, view up, etc,. to explicitly place the camera in the
scene.

>>> camera.SetFocalPoint(0, 0, 0)
>>> camera.SetPosition(0, 0, -10)
>>> camera.SetViewUp(0, 1, 0)
>>> camera.SetViewAngle(30)
>>> camera.SetParallelProjection(False)

If ParallelProjection is set to True, then you'll need
to specify parallel scalar as well i.e. the height of the viewport in
world-coordinate distances. The default is 1. Note that the `scale'
parameter works as an `inverse scale' where larger numbers produce smaller
images. This method has no effect in perspective projection mode.
>>> camera.SetParallelScale(1)

View properties

In pvpython, view properties are directly accessible on the view object returned by CreateRenderView or
GetActiveView .

Once you get access to the view properties objects, you can then set properties on it similar to properties on pipeline
modules such as sources, filters, and readers.

>>> view = GetActiveView()

Set center axis visibility
>>> view.CenterAxesVisibility = 0

Or you can use this variant to set the property on the active view.
>>> SetViewProperties(CenterAxesVisibility=0)

(continues on next page)

62 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

Another way of doing the same
>>> SetViewProperties(view, CenterAxesVisibility=0)

Similarly, you can change orientation axes related properties
>>> view.OrientationAxesVisibility = 0
>>> view.OrientationAxesLabelColor = (1, 1, 1)

Display properties

Similar to view properties, display properties are accessible from the display properties object or using the
SetDisplayProperties function.

>>> displayProperties = GetDisplayProperties(source, view)
Both source and view are optional. If not specified, the active source
and active view will be used.

Now one can change properties on this object
>>> displayProperties.Representation = "Outline"

Or use the SetDisplayProperties API.
>>> SetDisplayProperties(source, view, Representation=Outline)

Here too, source and view are optional and when not specified,
active source and active view will be used.

You can always use the help function to get information about available properties on a display properties object.

1.4.5 Line Chart View

Line Chart View can be used to plot data as a line plot representing changes in dependent variables against an
independent variable. Using display properties, you can also show scatter plots in this view. This view and other
charting views in ParaView follow a similar design, where you pick attribute arrays to plot using display properties,
and they are plotted in the view. How those values get plotted depends on the type of the view: Line Chart View
draws a line connecting sample points, Bar Chart View renders bars at each sample point, etc.

One of the most common ways of showing a line plot is to apply the Plot Over Line filter to any dataset. This
will probe the dataset along the probe line specified. You then plot the sampled values in the Line Chart View .
Alternatively, if you have a tabular dataset (i.e. vtkTable), then you can directly show the data in this view.

Did you know?

You can plot any arbitrary dataset, even those not producing vtkTable outputs, by using the Plot Data filter. Remem-
ber, however, that for extremely large datasets, while Render View may use parallel rendering strategies to improve
performance and reduce memory requirements, chart views rarely, if ever, support such parallel strategies.

1.4. Displaying data 63

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.40: paraview using Line Chart View to plot data values probed along a line through the dataset using Plot
Over Line filter.

Understanding plotting

Line Chart View plots data arrays. For any dataset being shown in the view, you first select which data array is to
be treated as the independent variable and plotted along the x-axis. Then, you select which arrays to plot along the
Y-axis. You can select multiple of these and setup properties for each of the series so they are rendered with different
colors and line styles. Since data arrays in VTK datasets are associated with cells or points, and the two are not directly
comparable to one another, you can only pick arrays associated with one type of attribute at any time.

Line Chart View in paraview

Creating a Line Chart View

Similar to creating Render View , you can split the viewport or convert an existing view to Line Chart View . Line
Chart View will also be automatically created if you apply a filter that needs this view, e.g., the Plot Over Line
filter.

Did you know?

If you generate lengthy data for the Line Chart View , the default variables that are selected may be slow to adjust.
You can change paraview’s default behavior to initially load no variables at all by selecting the Load No Chart
Variables checkbox under Settings/General/Properties Panel Options .

64 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Interactions

Interactions with the chart view result in changing the plotted axes ranges. You can left-click and drag to pan, i.e.,
change the origin. To change the range on either of the axes, you can right-click and drag vertically and/or horizontally
to change the scale on the vertical axes and/or horizontal axes, respectively.

You can also explicitly specify the axes range using view properties.

View properties

The view properties for Line Chart View are grouped as properties that affect the view and those that affect each of
the potential four axes.

To set a title, use Chart Title . Title text properties such as font, size, style, and alignment with respect to the chart
can be set under Chart Title Properties . To toggle the visibility of the legend, use Show Legend . While you
cannot interactively place the legend in this view, you can use Legend Location to place it at one of the corners.

There are four axes possible in this view: left, bottom, top, and right. The top and right axes are shown only when
some series is set to use those. (We will cover this in the Display properties subsection.) For each of the axes, you can
set a title (e.g., Left Axis Title , Bottom Axis Title , etc.) and adjust the title font properties. You can turn on
a grid with a customizable color by checking the Show Left Axis Grid , for example.

Next, you can customize the axes ranges. You can always simply interact with the mouse to set the axes ranges.
To precisely set the range, check the Axis Use Custom Range for the appropriate axis, e.g., Bottom Axis Use
Custom Range for fixing the bottom axis range, and then specify the data values to use for the min and the max.

1.4. Displaying data 65

ParaView Users Guide Documentation, Release 5.8.1

The labels on the axes are, by default, automatically determined to avoid visual clutter. By default, the axis labels are
arranged on a linear scale, but by enabling the Axis Log Scale option you can use log scaling instead. In addition,
you can override the default labelling strategy for any of the axes separately and, instead, specify the locations to label
explicitly. This can be done by checking Axis Use Custom Labels for a particular axis, e.g., Bottom Axis Use
Custom Labels . When checked, a list widget will be shown where you can manually add values at which labels will
be placed.

For generating log plots, simply check the corresponding Axis Use Log Scale , e.g., Left Axis Use Log Scale
to use log scale for Y-axis (Fig. 1.41). Note that log scale should only be used for an axis with a non-zero positive
range, since the log of a number less than or equal to 0 is undefined.

Fig. 1.41: Differences between line charts when using log scale for the Y-axis.

Display properties

Display properties allow you to setup which series or data arrays are plotted in this view. You start by picking the
Attribute Type . Select the attribute type that has the arrays of interest. For example, if you are plotting arrays
associated with points, then you should pick Point Data .) Arrays with different associations cannot be plotted
together. You may need to apply filters such as Cell Data to Point Data or Point Data to Cell Data to
convert arrays between different associations for that.

Properties under X Axis Parameters allow you to select the independent variable plotted on the X axis by choosing
the X Array Name . If none of the arrays are appropriate, you can choose to use the element index in the array as the
X axis by checking Use Index for XAxis .

66 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Series Parameters control series or data arrays plotted on the Y-axis. All available data arrays are lists in the table
widget that allows you to check/uncheck a series to plot in the first column. The second column in the table shows the
associated color used to plot that series. You can double-click the color swatch to change the color to use. By default,
ParaView will try to pick a palette of discrete colors. The third column shows the label to use for that series in the
legend. By default, it is set to be the same as the array name. You can double-click to change the name to your choice,
e.g., to add units.

Other series parameters include Line Thickness , Line Style , and Marker Style . To change any of these,
highlight a row in the Series Parameters widget, and then change the associated parameter to affect the highlighted
series. You can change properties for multiple series and can select multiple of them by using the CTRL (or) and keys.

Using Chart Axes , you can change which axes on which a series is shown. The default is Bottom-Left , but you
can change it to be Bottom-Right , Top-Left , or Top-Right to accommodate series with widely different ranges in
the same plot.

Line Chart View in pvpython

The principles involved in accessing Line Chart View from pvpython are similar to those with Render View . You
work with the view properties and display properties objects to change views and display properties, respectively. The
thing that changes is the set of available properties.

The following script demonstrates the typical usage:

>>> from paraview.simple import *

Create a data source to probe into.
>>> Wavelet()
<paraview.servermanager.Wavelet object at 0x1156fd810>

We update the source so that when we create PlotOverLine filter
it has input data available to determine good defaults. Otherwise,
we will have to manually set up the defaults.
>>> UpdatePipeline()

Now, create the PlotOverLine filter. It will be initialized using
defaults based on the input data.
>>> PlotOverLine()
<paraview.servermanager.PlotOverLine object at 0x1156fd490>

(continues on next page)

1.4. Displaying data 67

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

Show the result.
>>> Show()
<paraview.servermanager.XYChartRepresentation object at 0x1160a6a10>

This will automatically create a new Line Chart View if the
the active view is no a Line Chart View since PlotOverLine
filter indicates it as the preferred view. You can also explicitly
create it by using CreateView() function.

Display the result.
>>> Render()

Access display properties object.
>>> dp = GetDisplayProperties()
>>> print(dp.SeriesVisibility)
['arc_length', '0', 'RTData', '1']

This is list with key-value pairs where the first item is the name
of the series, then its visibility and so on.
To toggle visibility, change this list e.g.
>>> dp.SeriesVisibility = ['arc_length', '1', 'RTData', '1']

Same is true for other series parameters including series color,
line thickness etc.

For series color, the value consists of 3 values: red, green, and blue
color components.
>>> print(dp.SeriesColor)
['arc_length', '0', '0', '0', 'RTData', '0.89', '0.1', '0.11']

For series labels, value is the label to use.
>>> print(dp.SeriesLabel)
['arc_length', 'arc_length', 'RTData', 'RTData']

e.g. to change RTData's legend label, we can do something as follows:
>>> dp.SeriesLabel[3] = 'RTData -- new label'

Access view properties object.
>>> view = GetActiveView()
or
>>> view = GetViewProperties()

To change titles
>>> view.ChartTitle = "My Title"
>>> view.BottomAxisTitle = "X Axis"
>>> view.LeftAxisTitle = "Y Axis"

68 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.4.6 Bar Chart View

Fig. 1.42: paraview using Bar Chart View to plot the histogram for a dataset using the Histogram filter.

Bar Chart View is very similar to Line Chart View when it comes to creating the view, view properties, and
display properties. One difference is that, instead of rendering lines for each series, this view renders bars. In addition,
under the display properties, the Series Parameters like Line Style and Line Thickness are not available,
since they are not applicable to bars.

1.4.7 Box Chart View

Fig. 1.43: paraview using Box Chart View to plot the box chart for a dataset using the Compute Quartiles filter.

Box plot is a standard method for graphically depicting groups of statistical data based on their quartiles. A box plot
is represented by a box with the following properties: the bottom of the rectangle corresponds to the first quartile, a
horizontal line inside the rectangle indicates the median and the top of the rectangle corresponds to the third quartile.
The maximum and minimum values are depicted using vertical lines that extend from the top and the bottom of the
rectangle.

In ParaView, the Box Chart View can be used to display such box plots through the Compute Quartiles filter
which computes the statistical data needed by the view to draw the box plots.

1.4. Displaying data 69

ParaView Users Guide Documentation, Release 5.8.1

1.4.8 Plot Matrix View

Fig. 1.44: paraview using Plot Matrix View to generate a scatter plot matrix to understand correlations between
pairs of variables.

Plot Matrix View is a chart view that renders a scatter plot matrix. It allows you to spot patterns in the small scatter
plots, change focus to those plots of interest, and perform basic selection. The principle is that, for all selected arrays
or series to be plotted, the view generates a scatter plot for each pair. You can activate a particular scatter plot, in which
case the active plot is re-drawn at a bigger scale to make it easier to inspect. Additionally, the view shows a histogram
for each plotted variable or series.

The view properties allow you to set colors to use for active plot, histograms, etc., while the display properties allow
you to pick which series are plotted.

Interactions

You can click on any of the plots (except the histograms) in the matrix to make it active. Once actived, the active plot
will show that plot. You can then interact with the active plot exactly like Line Chart View or Bar Chart View for
panning and zoom.

View properties

View properties on this view allow you to pick styling parameters for the rendering ranging from title (Chart Title
) to axis colors (Active Plot Axis Color , Active Plot Grid Color). You can also control the visibility of
the histrogram plots, the active plot, the axes labels, the grids, and so on.

70 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Display properties

Similar to Line Chart View , you select the Attribute Type and then the arrays to plot. Since, in a scatter plot
matrix, the order in which the selected series are rendered can make it easier to understand correlations, you can change
the order by clicking and dragging the rows in the Series Parameters table.

1.4.9 Parallel Coordinates View

Fig. 1.45: paraview using Parallel Coordinates View to plot correlations between columns in a table.

Like Plot Matrix View , Parallel Coordinates View is also used to visualize correlations between data arrays.

One of the main features of this view is the ability to select specific data in order to analyse the factors influencing
the data. e.g., with a table of three variables, one being the “output” variable the other two being the potential factor
influencing the first, selecting only the output will enable you to see if none, one, or both of the factors are actually
influencing the output.

Fig. 1.46: High “S” data point are influenced more by low “Ks” than high “Q”

1.4. Displaying data 71

ParaView Users Guide Documentation, Release 5.8.1

1.4.10 Spreadsheet View

Fig. 1.47: paraview using SpreadSheet View to plot raw data values for the can.ex2 dataset.

SpreadSheet View is used to inspect raw data values in a tabular form. Unlike most other views, this view is primarily
intended to be used in the paraview user interface and, hence, is not available in pvpython.

To use this view, simply create this view and show the dataset produced by any pipeline module in it by using the
Pipeline Browser . SpreadSheet View can only show one dataset at a time. Therefore, showing a new dataset
will automatically hide the previously shown dataset.

The view’s toolbar provides quick access to several of this view’s capabilities. Use the Showing widget on the view
toolbar to view as well as to change the dataset being shown. The Attribute field allows you to pick which types
of elements to show, e.g., Cell Data , Point Data , Field Data , etc. Precision can be utilized to change the

precision used when displaying floating point numbers. The button enables you to select columns to show. Click
on the button to get a popup menu in which you check/uncheck the columns to show/hide. If showing Cell Data , the

button, when checked, enables you to see the point ids that form each of the cells.

Section 1.6.1 discusses how selections can be made in views to select elements of interest. Use the button to make
the view show only selected elements. Now, as you make selections in other views, this SpreadSheet View will
update to only show the values of the selected elements (as long as the dataset selected in are indeed being shown in
the view).

Did you know?

Some filters and readers produce vtkTable, and they are automatically displayed in a spreadsheet view. Thus, one can
very easily read the contents of a .csv file with ParaView.

72 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.4.11 Slice View

Fig. 1.48: Slice View can be used to show orthogonal slices from datasets.

Slice View is special type of Render View that can be used to view orthogonal slices from any dataset. Any dataset
shown in the view will be sliced in axis-aligned slices based on the locations specified on the view. The slice locations
along the three orthogonal axis planes can be specified by using the frame decoration around the view window.

Interactions

Since this view is a type of Render View , the camera interactions are same as that of Render View . Additionally,
you can interact with the frame decoration to manipulate slice locations along the three axis planes.

• Double-click the left mouse button in the region between the axis border and the view to add a new slice.

• You can click-and-drag a marker to move the slice location.

• To remove a slice, double-click with the left mouse button on the marker corresponding to that slice.

• To toggle visibility of the slice, you can right-click on the marker.

Slice View in pvpython

To create a slice view in use:
>>> view = CreateView("MultiSlice")

Use properties on view to set/get the slice offsets.
>>> view.XSliceValues = [-10, 0, 10]
>>> print(view.XSliceValues)
[-10, 0, 10]

Similar to XSliceValues, you have YSliceValues and ZSliceValues.
(continues on next page)

1.4. Displaying data 73

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> view.YSliceValues = [0]
>>> view.ZSliceValues = []

1.4.12 Python View

Some Python libraries, such as matplotlib, are widely used for making publication-quality plots of data. The Python
View provides a way to display plots made in a Python script right within paraview.

The Python View has a single property, a Python script that generates the image to be displayed in the viewport.
All the Python bindings for ParaView and VTK that are available in the Python scripting module are available from
within this script, making it possible to plot any array from just about any dataset that can be loaded into ParaView.
The Python script for the view is evaluated in a unique Python environment so that global variables defined in the script
do not clobber global variables in other Python scripts (either in other instances of the Python View or in the Python
interpreter). This environment is reset each time the script is evaluated, so data cannot be saved between evaluations.

The Python View requires that the Python script where the plotting occurs define two functions. In the first function,
you request which arrays you would like to transfer to the client for rendering. At present, all rendering in this view
takes place on the client, even in client-server mode. These arrays can be point data, cell data, field data, and table row
data. This function runs only on data-server processes. It provides access to the underlying data object on the server
so that you can query any aspect of the data using the Python-wrapped parts of VTK and ParaView.

The second function is where you put Python plotting or rendering commands. This function runs only on the ParaView
client. It has access to the complete data object gathered from the data server nodes, but only has access to the arrays
requested in the first function. This function will typically set up objects from a plotting library, convert data from VTK
to a form that can be passed to the plotting library, plot the data, and convert the plot to an image (a vtkImageData
object) that can be displayed in the viewport.

Selecting data arrays to plot

All the rendering in the Python View occurs in the client, so the client must get the data from the server. Because
the dataset residing on the ParaView server may be large, transferring all the data to the client may not be possible
or practical. For that reason, we have provided a mechanism to select which data arrays in a data object on the server
to transfer to the client. The overall structure of the data object, however, (including cell connectivity, point positions,
and hierarchical block structure) is always transferred to the client. By default, no data arrays are selected for transfer
from the server.

The Python script for the view must define a function called setup_data(view) . The view argument is the VTK
object for the Python View . The current datasets loaded into ParaView may be accessed through the view object.

Here’s an example of this function that was used to generate the image in Fig. 1.49:

def setup_data(view):
Iterate over visible data objects
for i in xrange(view.GetNumberOfVisibleDataObjects()):
You need to use GetVisibleDataObjectForSetup(i)
in setup_data to access the data object.
dataObject = view.GetVisibleDataObjectForSetup(i)

The data object has the same data type and structure
as the data object that sits on the server. You can
query the size of the data, for instance, or do anything
else you can do through the Python wrapping.
print('Memory size: {0} kilobytes'.format(dataObject.GetActualMemorySize()))

(continues on next page)

74 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.49: paraview using Python View with matplotlib to display a scatterplot of momentum magnitude versus
density (upper right) and a histogram of density (lower right) in the bluntfin.vts dataset.

(continued from previous page)

Clean up from previous calls here. We want to unset
any of the arrays requested in previous calls to this function.
view.DisableAllAttributeArrays()

By default, no arrays will be passed to the client.
You need to explicitly request the arrays you want.
Here, we'll request the Density point data array
view.SetAttributeArrayStatus(i, vtkDataObject.POINT, "Density", 1)
view.SetAttributeArrayStatus(i, vtkDataObject.POINT, "Momentum", 1)

Other attribute arrays can be set similarly
view.SetAttributeArrayStatus(i, vtkDataObject.FIELD, "fieldData", 1)

The vtkPythonView class passed in as the view argument to setup_data(view) defines several methods useful for
specifying which data arrays to copy:

• GetNumberOfVisibleDataObjects() - This returns the number of visible data objects in the view. If an
object is not visible, it should not show up in the rendering, so all the methods provided by the view deal only
with visible objects.

• GetVisibleDataObjectForSetup(visibleObjectIndex) - This returns the visibleObjectIndex'th
visible data object in the view. (The data object will have an open eye next to it in the pipeline browser.)

• GetNumberOfAttributeArrays(visibleObjectIndex, attributeType) - This returns the number of
attribute arrays for the visibleObjectIndex'th visible object and the given attributeType (e.g.,
vtkDataObject.POINT , vtkDataObject.CELL , etc.).

1.4. Displaying data 75

ParaView Users Guide Documentation, Release 5.8.1

• GetAttributeArrayName(visibleObjectIndex, attributeType, arrayIndex) - This returns the
name of the array of the given attribute type at the given array index for the visibleObjectIndex'th ob-
ject.

• SetAttributeArrayStatus(visibleObjectIndex, vtkDataObject.POINT, "Density", 1) - This
sets the array status of an attribute array. The first argument is the visible object index, the second object is
the attribute association of the array, the third argument is the name of the array, and the last argument specifies
if the array is to be copied (1) or not (0).

• GetAttributeArrayStatus(visibleObjectIndex, vtkDataObject.POINT, "Density") - This re-
trieves the array status for the object with the given visible index with a given attribute association (second
argument) and a name (last argument).

• EnableAllAttributeArrays() - This sets all arrays to be copied.

• DisableAllAttributeArrays() - This sets all arrays to not be copied.

The methods GetNumberOfVisibleDataObjects() , GetVisibleDataObjectForSetup(...) ,
GetNumberOfAttributeArrays(...) , and GetAttributeArrayName(...) are all convenient methods for
obtaining information about visible data objects in the view that could otherwise be accessed with existing view and
representation methods. The last four methods are valid only from within the setup_data(view) function.

Plotting data in Python

After the setup_data(view) function has been called, ParaView will transfer the data object and selected arrays
to the client. When that is done, it will call the render(view, width, height) function you have defined in your
script.

The view argument to the render(view, width, height) function is the vtkPythonView object on the client.
The width and height arguments are the width and height of the viewport, respectively. The render(view,
width, height) function uses the data available through the view, along with the width and height, to generate a
vtkImageData object that will be displayed in the viewport. This vtkImageData object must be returned from the
render(view, width, height) function. If no vtkImageData is returned, the viewport will be black. If the size
of the image does not match the size of the viewport, the image will be stretched to fit the viewport.

Putting it all together, here is a simple example that generates a solid red image to display in the viewport.

def render(view, width, height):
from paraview.vtk import vtkImageData
image = vtkImageData()
image.SetDimensions(width, height, 1)
from paraview.numeric import VTK_UNSIGNED_CHAR
image.AllocateScalars(VTK_UNSIGNED_CHAR, 4)
pixel_array = image.GetPointData().GetArray(0)
pixel_array.FillComponent(0, 255.0)
pixel_array.FillComponent(1, 0.0)
pixel_array.FillComponent(2, 0.0)
pixel_array.FillComponent(3, 0.0)

return image

This example does not produce an interesting visualization, but serves as a minimal example of how the render(view,
width, height) function should be implemented. Typically, we expect that the Python plotting library you use has
some utilities to expose the generated plot image pixel data. You need to copy that pixel data to the vtkImageData
object returned by the render(view, width, height) function. Exactly how you do this is up to you, but ParaView
comes with some utilities to make this task easier for matplotlib.

76 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Set up a matplotlib Figure

The Python View comes with a Python module, called python_view , that has some utility functions you can use.
To import it, use:

from paraview import python_view

This module has a function, called matplotlib_figure(view, width, height) , that returns a matplotlib.
figure.Figure given width and height arguments. This figure can be used with matplotlib plotting commands to
plot data as in the following:

def render(view, width, height):
figure = python_view.matplotlib_figure(width, height)

ax = figure.add_subplot(1,1,1)
ax.minorticks_on()
ax.set_title('Plot title')
ax.set_xlabel('X label')
ax.set_ylabel('Y label')

Process only the first visible object in the pipeline browser
dataObject = view.GetVisibleDataObjectForRendering(0)

x = dataObject.GetPointData().GetArray('X')

Convert VTK data array to numpy array for plotting
from paraview.numpy_support import vtk_to_numpy
np_x = vtk_to_numpy(x)

ax.hist(np_x, bins=10)

return python_view.figure_to_image(figure)

This definition of the render(view, width, height) function creates a histogram of a point data array
named X from the first visible object in the pipeline browser. Note the conversion function, python_view.
figure_to_image(figure) , in the last line. This converts the matplotlib Figure object created with
python_view.matplotlib_figure(width, height) into a vtkImageData object suitable for display in the view-
port.

1.4. Displaying data 77

ParaView Users Guide Documentation, Release 5.8.1

1.4.13 Comparative Views

Comparative Views , including Render View (Comparative) , Line Chart View (Comparative) , and Bar
Chart View (Comparative) , are used for generating comparative visualization from parameter studies. We will
cover these views in Chapter Section 2.3.

1.5 Filtering Data

Visualization can be characterized as a process of transforming raw data produced from experiments or simulations
until it takes a form in which it can be interpreted and analysed. The visualization pipeline introduced in Section 1.1.2
formalizes this concept as a data flow paradigm where a pipeline is set up of sources, filters, and sinks (collectively
called pipeline modules or algorithms). Data flows through this pipeline, being transformed at each node until it is in a
form where it can be consumed by the sinks. In previous chapters, we saw how to ingest data into ParaView (Section
1.2) and how to display it in views (Section 1.4). If the data ingested into ParaView already has all the relevant attribute
data, and it is in the form that can be directly represented in one the existing views, then that is all you would need.
The true power of the visualization process, however, comes from leveraging the various visualization techniques such
as slicing, contouring, clipping, etc., which are available as filters. In this chapter, we look at constructing pipelines to
transform data using such filters.

1.5.1 Understanding filters

In ParaView, filters are pipeline modules or algorithms that have inputs and outputs. They take in data on their inputs
and produce transformed data or results on their outputs. A filter can have multiple input and output ports. The number
of input and output ports on a filter is fixed. Each input port accepts input data for a specific purpose or role within the
filter. (E.g., the Resample With Dataset filter has two input ports. The one called Input is the input port through
which the dataset providing the attributes to interpolate is ingested. The other, called Source , is the input port through
which the dataset used as the mesh on which to re-sample is accepted.)

Fig. 1.50: A filter is a pipeline module with inputs and outputs. Data enters a filter through the inputs. The filter
transforms the data and produces the resulting data on its outputs. A filter can have one or more input and output ports.
Each input port can optionally accept multiple input connections.

An input port itself can optionally accept multiple input connections, e.g., the Append Datasets filter, which appends
multiple datasets to create a single dataset only has one input port (named Input). However, that port can accept
multiple connections for each of the datasets to be appended . Filters define whether a particular input port can accept
one or many input connections.

Similar to readers, the properties on the filter allow you to control the filtering algorithm. The properties available
depend on the filter itself.

78 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.5.2 Creating filters in paraview

All available filters in paraview are listed under the Filters menu. These are organized in various categories. To create
a filter to transform the data produced by a source or a reader, you select the source in the Pipeline Browser to make
it active, and then click on the corresponding menu item in the Filters menu. If a menu item is disabled, it implies that
the active source does not produce data that can be transformed by this filter.

Did you know?

If a menu item in the Filters menu is disabled, it implies that the active source(s) is not producing data
of the expected type or the characteristics needed by the filter. On Windows and Linux machines, if you
hover over the disabled menu item, the status bar will show the reason why the filter is not available.

Multiple input connections

When you create a filter, the active source is connected to the first input port of the filter. Filters like Append Datasets
can take multiple input connections on that input port. In such a case, to pass multiple pipeline modules as connections
on a single input port of a filter, select all the relevant pipeline modules in the Pipeline Browser . You can select
multiple items by using the CTRL (or) and key modifiers. When multiple pipeline modules are selected, only the filters
that accept multiple connections on their input ports will be enabled in the Filters menu.

1.5. Filtering Data 79

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.51: The Pipeline Browser showing a pipeline with multiple input connections. The Append Datasets filter
has two input connections on its only input port, Sphere0 and Cone0 .

Multiple input ports

Most filters have just one input port. Hence, as soon as you click on the filter name in the Filters menu, it will create
a new filter instance and that will show up in the Pipeline Browser . Certain filters, such as Resample With
Dataset , have multiple inputs that must be set up before the filter can be created. In such a case, when you click
on the filter name, the Change Input Dialog will pop up, as seen in Fig. 1.52. This dialog allows you to select the
pipeline modules to be connected to each of the input ports. The active source(s) is connected by default to the first
input port. You are free to change those as well.

Changing input connections

paraview allows you to change the inputs to a filter after the filter has been created. To change inputs to a filter, right-
click on the filter in the Pipeline Browser to get the context menu, and then select Change Input... . This will
pop up the same Change Input Dialog as when creating a filter with multiple input ports. You can use this dialog
to set new inputs for this filter.

Did you know?

While the Filters menu is a handy way to create new filters, with the long list of filters available in ParaView, manually
finding a particular filter in this menu can be very challenging. To make it easier, ParaView incorporates a quick launch
mechanism. When you want to create a new filter (or a source), simply type CTRL + Space or Alt + Space. This will
pop up the quick-launch dialog. Now, start typing the name of the filter you want. As you type, the dialog will update
to show the filters and sources that match the typed text. You can use the arrow keys to navigate and use the Enter
key to create the selected filter (or source). Note that filters may be disabled, as was the case in the Filters menu but
by default the selected item will be the first enabled filter. You can use Esc to clear the text you have typed so far. Hit
the Esc a second time, and the dialog will close without creating any new filter. You can also display the quick-launch
dialog using CTRL + + Space, Alt + + Space, or + + Space. In this case, the selected filter will be automatically
applied once created i.e. equivalent to creating the filter and then clicking the Apply button.

80 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.52: The Change Input Dialog is shown to allow you to pick inputs for each of the input ports for a filter with
multiple input ports. To use this dialog, first select the Input Port you want to edit on the left side, and select the
pipeline module(s) that are to be connected to this input port. Repeat the step for the other input port(s). If an input
port can accept multiple input connections, you can select multiple modules, just like in the Pipeline Browser .

1.5. Filtering Data 81

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.53: The context menu in the Pipeline Browser showing the option to change inputs for a filter.

82 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

1.5.3 Creating filters in pvpython

To create a filter in pvpython, you simply create the object by using its name as a constructor function.

>>> from paraview.simple import *
...

>>> filter = Shrink()

Similar to paraview, the filter will use the active source(s) as the input. Additionally, you can explicitly specify the
input in the function arguments.

>>> reader = OpenDataFile(...)
...

>>> shrink = Shift(Input=reader)

Multiple input connections

To setup multiple input connections, you can specify the connections as follows:

>>> sphere = Sphere()
>>> cone = Cone()

Simply pass the sources as a list to the constructor function.
>>> appendDatasets = AppendDatasets(Input=[sphere, cone])
>>> print(appendDatasets.Input)
[<paraview.servermanager.Sphere object at 0x6d75f90>, <paraview.servermanager.Cone␣
→˓object at 0x6d75c50>]

Multiple input ports

Setting up connections to multiple input ports is similar to the multiple input connections, except that you need to
ensure that you name the input ports properly.

>>> sphere = Sphere()
>>> wavelet = Wavelet()

>>> resampleWithDataSet = ResampleWithDataset(Input=sphere, Source=wavelet)

Changing input connections

Changing inputs in Python is as simple as setting any other property on the filter.

For filter with single input connection
>>> shrink.Input = cone

for filters with multiple input connects
>>> appendDatasets.Input = [reader, cone]

to add a new input.
>>> appendDatasets.Input.append(sphere)

(continues on next page)

1.5. Filtering Data 83

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

to change multiple ports
>>> resampleWithDataSet.Input = wavelet2
>>> resampleWithDataSet.Source = cone

1.5.4 Changing filter properties in paraview

Filters provide properties that you can change to control the processing algorithm employed by the filter. Changing and
viewing properties on filters is the same as with any other pipeline module, including readers and sources. You can
view and change these properties, when available, using the Properties panel. Section 2.1 covers how to effectively
use the Properties panel. Since this panel only shows the properties present on the active source , you must ensure
that the filter you are interested in is active. To make the filter active, use the Pipeline Browser to click on the filter
and select it.

1.5.5 Changing filter properties in pvpython

With pvpython, the available properties are accessible as properties on the filter object, and you can get or set their
values by name (similar to changing the input connections (Section 1.5.3)).

You can save the object reference when it's created.
>>> shrink = Shrink()

Or you can get access to the active source.
>>> Shrink() # <-- this will make the Shrink the active source.
>>> shrink = GetActiveSource()

To figure out available properties, you can always use help.
>>> help(shrink)
Help on Shrink in module paraview.servermanager object:

class Shrink(SourceProxy)
| The Shrink filter
| causes the individual cells of a dataset to break apart
| from each other by moving each cell\'s points toward the
| centroid of the cell. (The centroid of a cell is the
| average position of its points.) This filter operates on
| any type of dataset and produces unstructured grid
output.
Data descriptors defined here:
Input
This property specifies the input to the Shrink
filter.
ShrinkFactor
The value of this property determines how far the points
will move. A value of 0 positions the points at the centroid of the
cell; a value of 1 leaves them at their original
positions.

(continues on next page)

84 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

....

To get the current value of a property:
>>> sf = shrink.ShrinkFactor
>>> print sf
0.5

To set the value
>>> shrink.ShrinkFactor = 0.75

In the rest of this chapter, we will discuss some of the commonly used filters in detail. They are grouped under categories
based on the type of operation that they perform.

1.5.6 Filters for sub-setting data

These filters are used for extracting subsets from an input dataset. How this subset is defined and how it is extracted
depends on the type of the filter.

Clip

Clip is used to clip any dataset using either an implicit function (such as a plane, sphere, or a box) or using values of a
scalar data array in the input dataset. A scalar array is a point or cell attribute array with a single component. Clipping
involves iterating over all cells in the input dataset and then removing those cells that are considered outside of the space
defined by the implicit function or that have an attribute values less than the selected value. For cells that straddle the
clipping surface, these are clipped to pass through the part of the cell that is truly inside the specified implicit function
(or greater than the scalar value).

This filter converts any dataset into an unstructured grid (Section 1.3.1) or a multi-block of unstructured grids (Section
1.3.1) in the case of composite datasets.

Clip in paraview

To create the Clip filter, you can use the Filters > Common or the Filters > Alphabetical menu. This filter is also

accessible from the Common filters toolbar. You can click the button to create this filter.

On the Properties panel, you will see the available properties for this filter. One of the first things that you should
select is the Clip Type . Clip Type is used to specify the type of implicit function to use for the clipping operations.
The available options include Plane , Box , Sphere , and Scalar . Selecting any one of these options will update the
panel to show properties that are used to define the implicit function, e.g., the Origin and the Normal for the Plane
or the Center and the Radius for the Sphere . If you select Scalar , the panel will let you pick the data array and the
value with which to clip. Remember, cells with the data value greater than or equal to the selected value are considered
in and are passed through the filter.

Did you know?

When clipping with implicit functions, ParaView renders widgets in the active view that you can use to interactively
control the implicit function, called 3D widgets . As you interact with the 3D widget, the panel will update to reflect
the current values. The 3D widget is considered as an aid and not as a part of the actual visualization scene. Thus, if you
change the active source and the Properties panel navigates away from this filter, the 3D widget will automatically
be hidden.

1.5. Filtering Data 85

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.54: Comparison between results produced by the Clip filter with Crinkle Clip unchecked (left) and checked
(right) when clipping with an implicit plane. The image on the left also shows the 3D widget used to interactivly place
the implicit plane for the clipping operation.

Fig. 1.55: The Common filters toolbar in paraview for quick access to the commonly used filters.

86 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

The Inside Out option can be used to invert the behavior of this filter. Basically, it flips the notion of what is consid-
ered inside and outside of the given clipping space.

Check Crinkle Clip if you don’t want this filter to truly clip cells on the boundary, but want to preserve the input cell
structure and to pass the entire cell on through the boundary (Fig. 1.54). This option is not available when clipping by
Scalar .

Clip in pvpython

This following script demonstrates various aspects of using the Clip filter in pvpython.

Create the Clip filter.
>>> clip = Clip(Input=...)

Specify a 'ClipType' to use.
>>> clip.ClipType = 'Plane'

You can also use the SetProperties API instead.
>>> SetProperties(clip, ClipType='Plane')

>>> print(clip.GetProperty('ClipType').GetAvailable())
['Plane', 'Box', 'Sphere', 'Scalar']

To set the plane origin and normal
>>> clip.ClipType.Origin = [0, 0, 0]
>>> clip.ClipType.Normal = [1, 0, 0]

If you want to change to Sphere and set center and
radius, you can do the following.
>>> clip.ClipType = 'Sphere'
>>> clip.ClipType.Center = [0, 0, 0]
>>> clip.ClipType.Radius = 12

Using SetProperties API, the same looks like
>>> SetProperties(clip, ClipType='Sphere')
>>> SetProperties(clip.ClipType, Center=[0, 0, 0],

Radius = 12)

To set Crinkle clipping.
>>> clip.Crinkleclip = 1

For clipping with scalar, you pick the scalar array
and then the value as follows:
>>> clip.ClipType = 'Scalar'
>>> clip.Scalars = ('POINTS', 'Temp')
>>> clip.Value = 100

As always, to get the list of available properties on
the clip filter, use help()
>>> help(clip)
Help on Clip in module paraview.servermanager object:

class Clip(SourceProxy)
(continues on next page)

1.5. Filtering Data 87

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

| The Clip filter
| cuts away a portion of the input dataset using an
| implicit plane. This filter operates on all types of data
| sets, and it returns unstructured grid data on
| output.
|
| --
| Data descriptors defined here:
|
| ClipType
| This property specifies the parameters of the clip
| function (an implicit plane) used to clip the dataset.
|
| Crinkleclip
| This parameter controls whether to extract entire cells
| in the given region or clip those cells so all of the output one stay
| only inside that region.
|
| Input
| This property specifies the dataset on which the Clip
| filter will operate.
|
| InsideOut
| If this property is set to 0, the clip filter will
| return that portion of the dataset that lies within the clip function.
| If set to 1, the portions of the dataset that lie outside the clip
| function will be returned instead.
...

To get help on a specific implicit function type, make it the active
ClipType and then use help()
>>> clip.ClipType = 'Plane'
>>> help(clip.ClipType)
Help on Plane in module paraview.servermanager object:

class Plane(Proxy)
...

Common Errors

It is very easy to forget that clipping a structured dataset such as image data can dramatically increase the memory
requirements, since this filter will convert the structured dataset into an unstructured grid due to the nature of the
clipping operation itself. For structured dataset, think about using Slice or Extract Subset filters instead, whenever
appropriate. Those are not entirely identical operations, but they are often sufficient.

88 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Slice

Fig. 1.56: Comparison between results produced by the Slice filter when slicing image data with an implicit plane
with different options. The lower-left image shows the output produced by the Clip filter when clipping with the same
implicit function, for contrast.

The Slice filter slices through the input dataset with an implicit function such as a plane, a sphere, or a box. Since this
filter returns data elements along the implicit function boundary, this is a dimensionality reducing filter (except when
crinkle slicing is enabled), i.e., if the input dataset has 3D elements like tetrahedrons or hexahedrons, the output will
have 2D elements, line triangles, and quads, if any. While slicing through a dataset with 2D elements, the result will
be lines.

The properties available on this filter, as well as the way of setting this filter up, is very similar to the Clip filter with a
few notable differences. What remains similar is the set up of the implicit function – you have similar choices: Plane
, Box , Sphere , and Cylinder , as well as the option to toggle Crinkle slice (i.e., to avoid cutting through cells,
pass complete cells from the input dataset that intersects the implicit function).

What is different includes the lack of slicing by Scalar (for that, you can use the Contour filter) and a new option,
Triangulate the slice . Fig. 1.56 shows the difference in the generated meshes when various slice properties are
changed.

The Slice filter is more versatile than the Slice representation. First, the Slice representation is available for image
datasets only, whereas the Slice filter can be used on any type of 3D dataset. Second, the representation extracts a
subset of the image consisting of a 2D slice oriented in the XY, YZ, or XZ planes at the image voxel locations while the
plane used by the filter can be placed arbitrarily. Third, since the Slice representation always shows a flat object and
lighting may interfere with interpretation of data values on the slice, lighting is not applied to the Slice representation.
Lighting is applied, however, to results from the Slice filter. Lastly, the Slice representation may be faster than the
filter to update and scrub through different slices because it does not need to compute the intersection of a plane with
cells in the dataset.

In paraview, this filter can be created using the button on the Common filters toolbar, besides the Filters menu.

1.5. Filtering Data 89

ParaView Users Guide Documentation, Release 5.8.1

Extract Subset

Fig. 1.57: The Properties panel for the Extract Subset filter showing all available properties (including the ad-
vanced properties).

For structured datasets such as image datasets (Section 1.3.1), rectilinear grids (Section 1.3.1), and curvilinear grids
(Section 1.3.1), Extract Subset filter can be used to extract a region of interest or a subgrid. The region to extract
is specified using structured coordinates, i.e., the 𝑖, 𝑗, 𝑘 values. Whenever possible, this filter should be preferred over
Clip or Slice for structured datasets, since it preserves the input data type. Besides extracting a subset, this filter can
also be used to resample the dataset to a coarser resolution by specifying the sample rate along each of the structured
dimensions.

Extract Subset in paraview

This is one of the filters available on the Common filters toolbar To specify the region of interest, use the VOI
property. The values are specified as min and max values for each of the structured dimensions (𝑖, 𝑗, 𝑘,) in each row.
Sample Rate I , Sample Rate J , and Sample Rate K specify the sub-sampling rate. Set it to a value greater than
one to sub-sample. Include Boundary is used to determine if the boundary slab should be included in the extracted
result, if the sub-sampling rate along that dimension is greater than 1, and the boundary slab would otherwise have
been skipped.

Threshold

The Threshold filter extracts the portions of the input dataset whose scalars lie within the specified range. This filter
operates on either point-centered or cell-centered data. This filter operates on any type of dataset and produces an
unstructured grid output. To use this filter, you select the Scalars with which to threshold, and then specify the data
range that selects which cells are included in the output. When thresholding with cell data, all cells that have scalars
within the specified range will be passed through the filter. When thresholding with point data, cells with all points
with scalar values within the range are passed through if All Scalars is checked; otherwise, cells with any point that
passes the thresholding criteria are passed through.

90 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.58: Results from using the Threshold filter on the iron_protein.vtk dataset from ParaView data.

1.5. Filtering Data 91

ParaView Users Guide Documentation, Release 5.8.1

Threshold in paraview

Fig. 1.59: The Properties panel for the Threshold filter.

This filter is represented as on the Common filters toolbar. After selecting the Scalarswith which to threshold from
the combo-box, you select the Minimum and Maximum values to specify the range. If the range shown by the sliders
is not sufficient, you can manually type the values in the input boxes. The values are deliberately not clamped to the

current data range. The Scalars combo-box uses icons to help you differentiate between point data arrays and

cell data arrays

Threshold in pvpython

Create the filter. If Input is not specified, the active source will be
used as the input.
>>> threshold = Threshold(Input=...)

Here's how to select a scalar array.
>>> threshold.Scalars = ("POINTS", "scalars")

The value is a tuple with first value as the association:
either "POINTS" or "CELLS" and the second value is the name of the selected
array.

>>> print(threshold.Scalars)
['POINTS', 'scalars']

>>>> print(threshold.Scalars.GetArrayName())
'scalars'

>>> print(threshold.Scalars.GetAssociation())
'POINTS'

The threshold range is specified as:
>>> threshold.ThresholdRange = [63.75, 252.45]

To determine the types of arrays available in the input dataset, and their ranges, refer to the discussion on data infor-
mation in Section 1.3.3.

92 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Iso Volume

The Iso Volume filter is similar to Threshold in that you use this to create an output dataset from an input where
the cells that satisfy the specified range are scalar values. In fact, the filter is identical to Threshold when the cell
data scalars are selected. For point data scalars, however, this filter acts similar to the Clip filters when clipping with
scalars, in that cells are clipped along the iso-surface formed by the scalar range.

Extract Selection

Extract Selection is a general-purpose filter to extract selected elements from a dataset. There are several ways
of making selections in ParaView. Once you have made the selection, this filter allows you to extract the selected
elements as a new dataset for further processing. We will cover this filter in more detail when looking at selections in
ParaView in Section 1.6.6.

1.5.7 Filters for geometric manipulation

These filters are used to transform the geometry of the dataset without affecting its topology or its connectivity.

Transform

The Transform can be used to arbitrarily translate, rotate, and scale a dataset. The transformation is applied by scaling
the dataset, rotating it, and then translating it based on the values specified.

As this is a geometric manipulation filter, this filter does not affect connectivity in the input dataset. While it tries
to preserve the input dataset type, whenever possible, there are cases when the transformed dataset can no longer be
represented in the same data type as the input. For example, with image data (Section 1.3.1) and rectilinear grids
(Section 1.3.1) that are transformed by rotation, the output dataset can be non-axis aligned and, hence, cannot be
represented as either data types. In such cases, the dataset is converted to a structured, or curvilinear, grid (Section
1.3.1). Since curvilinear grids are not as compact as the other two, the need to store the results in a more general data
type implies a considerable increase in the memory footprint.

Transform in paraview

You can create a new Transform from the Filters > Alphabetical menu. Once created, you can set the transform as the
translation, rotation, and scale to use utilizing the Properties panel. Similar to Clip , this filter also supports using
a 3D widget to interactively set the transformation.

Transform in pvpython

To create the filter(if Input is not specified, the active source will be
used as the input).
>>> transform = Transform(Input=...)

Set the transformation properties.
>>> transform.Translate.Scale = [1, 2, 1]
>>> transform.Transform.Translate = [100, 0, 0]
>>> transform.Transform.Rotate = [0, 0, 0]

1.5. Filtering Data 93

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.60: The Transform filter showing the 3D widget that can be used to interactively set the transform.

Reflect

Fig. 1.61: The Reflect filter can be used to reflect a dataset along a specific axis plane.

Reflect can be used to reflect any dataset across an axis plane. You can pick the axis plane to be one of the planes
formed by the bounding box of the dataset. For that, set Plane as X Min , X Max , Y Min , Y Max , Z Min , or Z Max .
To reflect across an arbitrary axis plane, select X , Y , or Z for the Plane property, and then set the Center to the plane
offset from the origin.

This filter reflects the input dataset and produces an unstructured grid (Section 1.3.1). Thus, the same caveats for Clip
and Threshold filter apply here when dealing with structured datasets.

Warp By Vector

Warp By Vector can be used to displace point coordinates in an input mesh using vectors in the dataset itself. You
select the vectors to use utilizing the Vectors property on the Properties panel. Scale Factor can be used to
scale the displacement applied.

94 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.62: The Warp By Vector filter can be used to displace points in original data shown on the left, using the
displacement vectors (indicated by arrow glyphs Section 1.5.8) to produce the result shown on the right.

Warp By Scalar

Warp By Scalar is similar to Warp By Vector in the sense that it warps the input mesh. However, it does so using
a scalar array in the input dataset. The direction of displacement can either be explicitly specified using the Normal
property, or you can check Use Normal to use normals at the point locations.

1.5.8 Filters for sampling

These filters compute new datasets that represent some essential features from the datasets that they take as input.

Glyph

Glyph is used to place markers or glyphs at point locations in the input dataset. The glyphs can be oriented or scaled
based on vector and scalar attributes on those points.

To create this filter in paraview, you can use the Filters menu, as well as the button on the Common filters toolbar.
You first select the type of glyph using one of the options in Glyph Type . The choices include Arrow , Sphere ,
Cylinder , etc. Next, you select the point arrays to use as the Orientation Array (selecting No orientation
array will result in the glyphs not being oriented). Similarly, you select a point array to serve as the glyph Scale
Array (no scaling is performed if No scale array is chosen).

If the Scale Array is set to a vector array, the Vector Scale Mode property is available to select which properties
of the vector should be used to transform each glyph. If Scale by Magnitude is chosen, then the glyph at a point
will be scaled by the magnitude of the vector at that point. If Scale by Components is chosen, glyphs will be scaled
separately in each dimension by the vector component in that dimension.

The Scale Factor is used to apply a constant scaling to all the glyphs, independent of the Scale Array and Vector
Scale Mode properties. Choosing a good scale factor depends on several things including the bounds on the input
dataset, the Scale Array and Vector Scale Mode selected, and the range for the array selected as the Scale Array

. You can use the button next to the Scale Factorwidget to have paraview pick a usually reasonable scale factor
value based on the current dataset and scaling properties.

The Masking properties control which points from the input dataset get glyphed. The Glyph Mode controls how points
are selected to be glyphs (Fig. 1.64). The available options are as follows:

• All Points : This selects all points in the input dataset for glyphing. Use this mode with caution and only
when the input dataset has relatively few points. Since all points in the input dataset are glyphed, this can not
only cause visual clutter, but also clog up memory and take a long to time to generate and render the glyphs.

1.5. Filtering Data 95

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.63: The Properties panel for the Glyph filter.

96 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• Every Nth Points : This elects every 𝑛𝑡ℎ point in the input dataset for glyphing, where 𝑛 can be specified
using Stride . Setting Stride to 1 will have the same effect as All Points .

• Uniform Spatial Distribution : This selects a random set of points. The algorithm works by first comput-
ing up to Maximum Number of Sample Points in the space defined by the bounding box of the input dataset.
Then, points in the input dataset that are close to the point in this set of sample points are glyphed. The Seed
is used to seed the random number generator used to generate the sample points. This ensures that the random
sample points are reproducible and consistent.

Fig. 1.64: Comparison between various Glyph Mode s when applied to the same dataset generated by the Wavelet
source.

Did you know?

The Glyph representation can be used for many of the same visualizations where a Glyph filter might be used. It may
offer faster rendering and consume less memory than the Glyph filter with similar capabilities. In circumstances where
generating a 3D geometry is required, e.g., when exporting glyph geometry to a file, the Glyph filter is required.

Glyph With Custom Source

Glyph With Custom Source is the same as Glyph , except that instead of a limited set of Glyph Type , you can
select any data source producing a polygonal dataset (Section 1.3.1) available in the Pipeline Browser . To use
this filter, select the data source you wish to glyph in the Pipeline Browser and attach this filter to it. You will be
presented a dialog where you can set the Input (which defaults to the source you selected) and the Glyph Source .

Stream Tracer

The Stream Tracer filter is used to generate streamlines for vector fields. In visualization, streamlines refer to curves
that are instanteneously tangential to the the vector field in the dataset. They provide an indication of the direction in
which the particles in the dataset would travel at that instant in time. The algorithm works by taking a set of points,
known as seed points, in the dataset and then integrating the streamlines starting at these seed points.

In paraview, you can create this filter using the Filters menu, as well as the button on the Common filters toolbar.
To use this filter, you first select the attribute array to use as the Vectors for generating the streamline. Integration
Parameters let you fine tune the streamline integration by specifying the direction to integrate, Integration

1.5. Filtering Data 97

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.65: Setting the Input and Glyph Source in the Glyph With Custom Source filter.

Fig. 1.66: Streamlines generated from the disk_out_ref.ex2 dataset using the Point Source (left) and the High
Resolution Line Source (right). On the left, we also added the Tube filter to the output of the Stream Tracer
filter to generate 3D tubes rather than 1D polygonal lines, which can be hard to visualize due to lack of shading.

98 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Direction , as well as the type of integration algorithm to use, Integrator Type . Advanced integration param-
eters are available in the advanced view of the Properties panel that let you further tune the integration, including
specifying the step size and others. You use the Maximum Streamline Length to limit the maximum length for the
streamline – the longer the length, the longer the generated streamlines.

Seeds group lets you set how the seed points for generating the streamlines are produced. You have two options: Point
Source , which produces a point clound around the user-specified Point based on the parameters specified, and High
Resolution Line Source , which produces seed points along the user-specified line. You can use the 3D widgets
shown in the active Render View to interactively place the center for the point cloud or for defining the line.

Did you know?

The Stream Tracer filter produces a polydata with 1D lines for each of the generated streamlines. Since 1D lines
cannot be shaded like surfaces in the Render View , you can get visualizations where it is hard to follow the streamlines.
To give the streamlines some 3D structure, you can apply the Tube filter to the output of the streamlines. The properties
on the Tube filter let you control the thickness of the tubes. You can also vary the thickness of the tubes based on data
array, e.g., the magnitude of the vector field at the sample points in the streamline!

A script using the Stream Tracer filter in paraview typically looks like this:

find source
>>> disk_out_refex2 = FindSource('disk_out_ref.ex2')

create a new 'Stream Tracer'
>>> streamTracer1 = StreamTracer(Input=disk_out_refex2,

SeedType='Point Source')
>>> streamTracer1.Vectors = ['POINTS', 'V']

init the 'Point Source' selected for 'SeedType'
>>> streamTracer1.SeedType.Center = [0.0, 0.0, 0.07999992370605469]
>>> streamTracer1.SeedType.Radius = 2.015999984741211

show data in view
>>> Show()

create a new 'Tube'
>>> tube1 = Tube(Input=streamTracer1)

Properties modified on tube1
>>> tube1.Radius = 0.1611409378051758

show the data from tubes in view
>>> Show()

1.5. Filtering Data 99

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.67: The Properties panel showing the default properties for the Stream Tracer filter.
100 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Stream Tracer With Custom Source

Stream Tracer allows you to specify the seed points either as a point cloud or as a line source. However, if you
want to provide your own seed points from another data producer, use the Stream Tracer With Custom Source .
Similar to Glyph With Custom Source , this filter allows you to pick a second input connection to use as the seed
points.

Fig. 1.68: Streamlines generated from the disk_out_ref.ex2 dataset using the output of the Slice filter as the
Source for seed points.

Resample With Dataset

Fig. 1.69: An example of Resample With Dataset . On the left is a multiblock tetrahedra mesh (Input). The
middle shows a multiblock unstructured grid (Source). The outline of Input is also shown in this view. The result
of applying the filter is shown on the right

Resample With Dataset samples the point and cell attributes of one dataset on to the points of another dataset. The
two datasets are supplied to the filter using its two input ports: Input , which is the dataset that provides the attributes
to resample, and Source , which is the dataset that provides the points to sample at. This filter is available under the
Filters menu.

1.5. Filtering Data 101

ParaView Users Guide Documentation, Release 5.8.1

Resample To Image

Resample To Image is a specialization of Resample With Dataset . The filter takes one input and samples its
point and cell attributes onto a uniform grid of points. The bounds and extents of the uniform grid can be specified
using the properties panel. By default, the bounds are set to the bounds of the input dataset. The output of the filter is
an Image dataset.

Fig. 1.70: The Properties panel for Resample To Image filter.

Some operations can be performed more efficiently on uniform grid datasets. Volume rendering is one such operation.
The Resample to Image filter can be used to convert any dataset to Image data before performing such operations.

Probe

Probe samples the input dataset at a specific point location to obtain the cell data attributes for the cell containing the
point as well as the interpolated point data attributes. You can either use the SpreadSheet View or the Information
panel to inspect the probed values. The probe location can be specified using the interactive 3D widget shown in the
active Render View .

102 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.71: An example of Resample To Image . The left portion shows the input (unstructured grid), and the middle
displays the output image data. On the right is a volume rendering of the resampled data.

Plot over line

Fig. 1.72: The Plot Over Line filter applied to the disk_out_ref.ex2 dataset to plot values at sampled locations
along the line. Gaps in the line correspond to the locations in the input dataset where the line falls outside the dataset.

Plot Over Line will sample the input dataset along the specified line and then plot the results in Line Chart View
. Internally, this filter uses the same mechanism as the Probe filter, probing along the points in the line to get the
containing cell attributes and interpolated point attributes.

Using the Resolution property on the Properties panel, you can control the number of sample points along the
line.

1.5. Filtering Data 103

ParaView Users Guide Documentation, Release 5.8.1

1.5.9 Filters for attribute manipulation

The filters covered in this section are used to add new attribute arrays to the dataset, which are typically used to add
derived quantities to use in pipelines for further processing.

Calculator

The Calculator filter computes a new data array or new point coordinates as a function of existing input arrays. If
point-centered arrays are used in the computation of a new data array, the resulting array will also be point-centered.
Similarly, computations using cell-centered arrays will produce a new cell-centered array. If the function is computing
point coordinates (requested by checking the Coordinate Results property on the Properties panel) , the result
of the function must be a three-component vector. The Calculator interface operates similarly to a scientific calcu-
lator. In creating the function to evaluate, the standard order of operations applies. Each of the calculator functions is
described below. Unless otherwise noted, enclose the operand in parentheses using the (and) buttons.

• Clear : Erase the current function.

• /: Divide one scalar by another. The operands for this function are not required to be enclosed in parentheses.

• *: Multiply two scalars, or multiply a vector by a scalar (scalar multiple). The operands for this function are not
required to be enclosed in parentheses.

• -: Negate a scalar or vector (unary minus), or subtract one scalar or vector from another. The operands for this
function are not required to be enclosed in parentheses.

• +: Add two scalars or two vectors. The operands for this function are not required to be enclosed in parentheses.

• sin : Compute the sine of a scalar.

• cos : Compute the cosine of a scalar.

• tan : Compute the tangent of a scalar.

• asin : Compute the arcsine of a scalar.

• acos : Compute the arccosine of a scalar.

• atan : Compute the arctangent of a scalar.

• sinh : Compute the hyperbolic sine of a scalar.

• cosh : Compute the hyperbolic cosine of a scalar.

• tanh : Compute the hyperbolic tangent of a scalar.

• min : Compute minimum of two scalars.

• max : Compute maximum of two scalars.

• x^y : Raise one scalar to the power of another scalar. The operands for this function are not required to be
enclosed in parentheses.

• sqrt : Compute the square root of a scalar.

• e^x Raise e to the power of a scalar.

• log10 : Compute the logarithm of a scalar to the base 10.

• ln : Compute the logarithm of a scalar to the base 𝑒.

• ceil : Compute the ceiling of a scalar.

• floor : Compute the floor of a scalar.

• abs : Compute the absolute value of a scalar.

104 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• v1.v2 : Compute the dot product of two vectors. The operands for this function are not required to be enclosed
in parentheses.

• cross : Compute cross product of two vectors.

• mag : Compute the magnitude of a vector.

• norm : Normalize a vector. The operands are described below. The digits 0-9 and the decimal point are used to
enter constant scalar values.

• iHat , jHat , and kHat are vector constants representing unit vectors in the X, Y, and Z directions, respectively.

The Scalars menu lists the names of the scalar arrays and the components of the vector arrays of either the point-
centered or cell-centered data. The Vectors menu lists the names of the point-centered or cell-centered vector arrays.
The function will be computed for each point (or cell) using the scalar or vector value of the array at that point (or cell).
The filter operates on any type of dataset, but the input dataset must have at least one scalar or vector array. The arrays
can be either point-centered or cell-centered. The Calculator filter’s output is of the same dataset type as the input.

A common use-case is to convert three input scalars into a vector array. For that, the Function would look something
like: 𝑠𝑐𝑎𝑙𝑎𝑟𝑥 * 𝑖𝐻𝑎𝑡+ 𝑠𝑐𝑎𝑙𝑎𝑟𝑦 * 𝑗𝐻𝑎𝑡+ 𝑠𝑐𝑎𝑙𝑎𝑟𝑧 * 𝑘𝐻𝑎𝑡.

The Properties panel provides access to several options for this filter. Checking Coordinate Results , Result
Normals , or Result TCoords will set the computed array as the point coordinates, normals, or texture coordinates,
respectively. Result Array Name is used to specify a name for the computed array. The default is Result.

Sometimes, the expression can yield invalid values. To replace all invalid values with a specific value, check
the Replace Invalid Results checkbox and then enter the value to use to replace invalid values using the
Replacement Value . The output array data type is set with the Result Array Type property.

Python calculator

The Python Calculator is similar to Calculator in that it processes one or more input arrays based on an expression
provided by the user to produce a new output array. However, it uses Python (and NumPy) to do the computation.
Therefore, it provides more expressive expression capabilities.

Specify the Expression to use, the Array Association to indicate the array association (Point Data or Cell
Data), the name of output array (Array Name), and a toggle that controls whether the input arrays are copied to the
output (Copy Array).

Basic tutorial

Start by creating a Sphere source and applying the Python Calculator to it. As the first expression, use the following
and apply:

5

This should create an array name result in the output point data. Note that this is an array that has a value of 5 for each
point. When the expression results in a single value, the calculator will automatically make a constant array. Next, try
the following:

Normals

Now, the result array should be the same as the input array Normals. As described in detail later, various functions are
available through the calculator. For example, the following is a valid expression:

sin(Normals) + 5

1.5. Filtering Data 105

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.73: The Properties panel for the Calculator filter showing the advanced properties.

106 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.74: The Properties Panel for Python Calculator.

It is very important to note that the Python Calculator has to produce one value per point or cell depending on the
Array Association parameter. Most of the functions described here apply individually to all point or cell values and
produce an array the same dimensions as the input. However, some of them, such as min() and max() , produce single
values.

Common Errors

In the Programmable Filter , all the functions in vtk.numpy_interface.algorithms are imported prior to ex-
ecuting the script. As a result, some built-in functions, such as min and max , are clobbered by that import. To use the
built-in functions, import the import __builtin__module and access those functions with, e.g., __builtin__.min
and __builtin__.max

Accessing data

There are several ways of accessing input arrays within expressions. The simplest way is to access it by name:

sin(Normals) + 5

This is equivalent to:

sin(inputs[0].PointData['Normals']) + 5

The example above requires some explanation. Here, inputs[0] refer to the first input (dataset) to the filter. Python
Calculator can accept multiple inputs. Each input can be accessed as inputs[0] , inputs[1] , . . . You can access
the point or cell data of an input using the .PointData or .CellData qualifiers. You can then access individual arrays
within the point or cell data containers using the [] operator. Make sure to use quotes or double-quotes around the
array name. Arrays that have names with certain characters (such as space, +, -, *, /) can only be accessed using this
method.

Certain functions apply directly on the input mesh. These filters expect an input dataset as argument. For example,

area(inputs[0])

For data types that explicitly define the point coordinates, you can access the coordinates array using the .Points
qualifier. The following extracts the first component of the coordinates array:

1.5. Filtering Data 107

ParaView Users Guide Documentation, Release 5.8.1

inputs[0].Points[:,0]

Note that for certain data types, mainly image data (uniform rectilinear grids) and rectilinear grids, point coordinates
are defined implicitly and cannot be accessed as an array.

Comparing multiple datasets

The Python Calculator can be used to compare multiple datasets, as shown by the following example.

• Go to the Menu Bar, and select File > Disconnect to clear the Pipeline.

• Select Source > Mandelbrot, and then click Apply, which will set up a default version of the Mandelbrot Set.
The data for this set are stored in a 251× 251 scalar array.

• Select Source > Mandelbrot again, and then go to the Properties panel and set the Maximum Number of
Iterations to 50. Click Apply , which will set up a different version of the Mandelbrot Set, represented by the
same size array.

• Hold the Shift key down and select both of the Mandelbrot entries in the Pipeline Inspector, and then go to the
Menu Bar, and select Filter > Python Calculator. The two Mandelbrot entries will now be shown as linked, as
inputs, to the Python Calculator .

• In the Properties panel for the Python Calculator filter, enter the following into the Expression box:

inputs[1].PointData['Iterations'] - inputs[0].PointData['Iterations']

This expression specifies the difference between the second and the first Mandelbrot arrays. The result is saved
in a new array called results . The prefixes in the names for the array variables, inputs[1] and inputs[0] ,
refer to the first and second Mandelbrot entries, respectively, in the Pipeline. PointData specifies that the inputs
contain point values. The quoted label 'Iterations' is the local name for these arrays. Click Apply to initiate
the calculation.

Click the Display tab in the Properties Panel for the Python Calculator , and go to the first tab to the right
of the Color by label. Select the item results in that tab, which will cause the display window to the right to show
the results of the expression we entered in the Python Calculator . The scalar values representing the difference
between the two Mandelbrot arrays are represented by colors that are set by the current color map (see Edit Color
Map. . . for details).

There are a few things to note:

• Python Calculator will always copy the mesh from the first input to its output.

• All operations are applied point-by-point. In most cases, this requires that the input meshes (topology and ge-
ometry) are the same. At the least, it requires that the inputs have the same number of points and cells.

• In parallel execution mode, the inputs have to be distributed exactly the same way across processes.

Basic Operations

The Python Calculator supports all of the basic arithmetic operations using the +, −, * and / operators. These are
always applied element-by-element to point and cell data including scalars, vectors, and tensors. These operations also
work with single values. For example, the following adds 5 to all components of all Normals.

Normals + 5

The following adds 1 to the first component, 2 to the second component, and 3 to the third component:

108 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Normals + [1,2,3]

This is specially useful when mixing functions that return single values. For example, the following normalizes the
Normals array:

(Normals - min(Normals))/(max(Normals) - min(Normals))

A common use case in a calculator is to work on one component of an array. This can be accomplished with the
following:

Normals[:, 0]

The expression above extracts the first component of the Normals vector. Here, : is a placeholder for “all elements”.
One element can be extracted by replacing : with an index. For example, the following creates a constant array from
the first component of the normal of the first point:

Normals[0, 0]

Alternatively, the following assigns the normal of the first point to all points:

Normals[0, :]

It is also possible to create a vector array from two or three scalar arrays using the make_vector() function:

make_vector(velocity_x, velocity_y, velocity_z)

For temporal datasets, you also have access to the dataset timestep index or time value in the expression as t_index
or time_index , and t_value or time_value respectively. When dealing with multiple inputs, you can specify the
same variable names scoped on the appropriate input e.g. inputs[0].t_index .

In some datasets, field data is used to store global data values not associated with cells or points. To use field data in
a Python Calculator expression, access it with the FieldData dictionary available in the input as in the following
example:

VolumeOfCell * inputs[0].FieldData['MaterialData'][time_index]

Did you know?

Under the cover, the Python Calculator uses NumPy. All arrays in the expression are compatible with NumPy
arrays and can be used where NumPy arrays can be used. For more information on what you can do with these arrays,
consult with the NumPy references:cite:numpy.

Functions

The following is a list of functions available in the Python Calculator . Note that this is a partial list, since most
of the NumPy and SciPy functions can be used in the Python Calculator . Many of these functions can take single
values or arrays as argument.

• abs(x) : Returns the absolute value(s) of 𝑥.

• add(x, y) : Returns the sum of two values. 𝑥 and 𝑦 can be single values or arrays. This is the same as 𝑥+ 𝑦.

• area(dataset) : Returns the surface area of each cell in a mesh.

• aspect(dataset) : Returns the aspect ratio of each cell in a mesh.

1.5. Filtering Data 109

ParaView Users Guide Documentation, Release 5.8.1

• aspect_gamma(dataset) : Returns the aspect ratio gamma of each cell in a mesh.

• condition(dataset) : Returns the condition number of each cell in a mesh.

• cross(x, y) : Returns the cross product for two 3D vectors from two arrays of 3D vectors.

• curl(array) : Returns the curl of an array of 3D vectors.

• divergence(array) : Returns the divergence of an array of 3D vectors.

• divide(x, y) : Element-by-element division. 𝑥 and 𝑦 can be single values or arrays. This is the same as
math:frac{x}{y}.

• det(array) : Returns the determinant of an array of 2D square matrices.

• determinant(array) : Returns the determinant of an array of 2D square matrices.

• diagonal(dataset) : Returns the diagonal length of each cell in a dataset.

• dot(a1, a2) : Returns the dot product of two scalars/vectors of two array of scalars/vectors.

• eigenvalue(array) : Returns the eigenvalue of an array of 2D square matrices.

• eigenvector(array) : Returns the eigenvector of an array of 2D square matrices.

• exp(x) : Returns 𝑒𝑥.

• global_max(array) : Returns the maximum value of an array of scalars, vectors, or tensors among all process.
This is not yet supported for multi-block and AMR datasets.

• global_mean (array) : Returns the mean value of an array of scalars, vectors, or tensors among all processes.
This is not yet supported for multi-block and AMR datasets.

• global_min(array) : Returns the minimum value of an array of scalars/vectors/tensors among all process.
This is not yet supported for multi-block and AMR datasets.

• gradient(array) : Returns the gradient of an array of scalars or vectors.

• inv(array) : Returns the inverse an array of 2D square matrices.

• inverse(array) : Returns the inverse of an array of 2D square matrices.

• jacobian(dataset) : Returns the jacobian of an array of 2D square matrices.

• laplacian(array) : Returns the jacobian of an array of scalars.

• ln(array) : Returns the natural logarithm of an array of scalars/vectors/tensors.

• log(array) : Returns the natural logarithm of an array of scalars/vectors/tensors.

• log10(array) : Returns the base 10 logarithm of an array of scalars/vectors/tensors.

• make_point_mask_from_NaNs(dataset, array) : This function will create a ghost array corresponding
to an input with NaN values. For each NaN value, the output array will have a corresponding value of vtk.
vtkDataSetAttributes.HIDDENPOINT . These values are also combined with any ghost values that the dataset
may have.

• make_cell_mask_from_NaNs(dataset, array) : This function will create a ghost array corresponding to
an input with NaN values. For each NaN value, the output array will have a corresponding value of vtk.
vtkDataSetAttributes.HIDDENCELL . These values are also combined with any ghost values that the dataset
may have.

• max(array) : Returns the maximum value of the array as a single value. Note that this function returns the
maximum within a block for AMR and multi-block datasets, not across blocks/grids. Also, this returns the
maximum within each process when running in parallel.

• max_angle(dataset) : Returns the maximum angle of each cell in a dataset.

110 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• mag(a) : Returns the magnitude of an array of scalars/vectors.

• mean(array) : Returns the mean value of an array of scalars/vectors/tensors.

• min(array) : Returns the minimum value of the array as a single value. Note that this function returns the
minimum within a block for AMR and multi-block datasets, not across blocks/grids. Also, this returns the
minimum within each process when running in parallel.

• min_angle(dataset) : Returns the minimum angle of each cell in a dataset.

• mod(x, y) : Same as remainder (𝑥, 𝑦).

• multiply(x, y) : Returns the product of 𝑥 and 𝑦. 𝑥 and 𝑦 can be single values or arrays. Note that this is an
element-by-element operation when 𝑥 and 𝑦 are both arrays. This is the same as 𝑥× 𝑦.

• negative(x) : Same as −𝑥.

• norm(a) : Returns the normalized values of an array of scalars/vectors.

• power(x, a) : Exponentiation of 𝑥 with 𝑎. Here, both 𝑥 and 𝑎 can either be a single value or an array. If 𝑥 and
𝑦 are both arrays, a one-by-one mapping is used between two arrays.

• reciprocal(x) : Returns 1
𝑥 .

• remainder(x, y) : Returns 𝑥− 𝑦 × 𝑓𝑙𝑜𝑜𝑟(𝑥𝑦). 𝑥 and 𝑦 can be single values or arrays.

• rint(x) : Rounds 𝑥 to the nearest integer(s).

• shear(dataset) : Returns the shear of each cell in a dataset.

• skew(dataset) : Returns the skew of each cell in a dataset.

• square(x) : Returns 𝑥 * 𝑥.

• sqrt(x) : Returns 2
√
𝑥.

• strain(array) : Returns the strain of an array of 3D vectors.

• subtract(x, y) : Returns the difference between two values. 𝑥 and y can be single values or arrays. This is
the same as 𝑥− 𝑦.

• surface_normal(dataset) : Returns the surface normal of each cell in a dataset.

• trace(array) : Returns the trace of an array of 2D square matrices.

• volume(dataset) : Returns the volume normal of each cell in a dataset.

• vorticity(array) : Returns the vorticity/curl of an array of 3D vectors.

• vertex_normal(dataset) : Returns the vertex normal of each point in a dataset.

Trigonometric Functions

Below is a list of supported trigonometric functions:

sin(x) arccos(x) cosh(x) arctanh(x)
cos(x) arctan(x) tanh(x)
tan(x) hypot(x1, x2) arcsinh(x)
arcsin(x) sinh(x) arccosh(x)

1.5. Filtering Data 111

ParaView Users Guide Documentation, Release 5.8.1

Gradient

There are two filters that can compute gradients:

• Gradient : This is designed for efficiently computing gradients of point data arrays on a uniform rectilinear grid
(Section 1.3.1).

• Gradient of Unstructured DataSet : This computes gradient quantities for a cell or point data array for
any type of dataset. This filter optionally computes the gradient, divergence, vorticity which is also known as the
curl, and Q-criterion. By default only the gradient computation is enabled. A 3-component array is required in
order to compute divergence, vorticity or Q-criterion.

Mesh Quality

The Mesh Quality filter creates a new cell array containing a geometric measure of each cell’s fitness. Different
quality measures can be chosen for different cell shapes.

Triangle Quality indicates which quality measure will be used to evaluate triangle quality. The Radius Ratio is
the size of a circle circumscribed by a triangle’s three vertices divided by the size of a circle tangent to a triangle’s three
edges. The Edge Ratio is the ratio of the longest edge length to the shortest edge length.

Quad Quality indicates which quality measure will be used to evaluate quad cells.

Tet Quality indicates which quality measure will be used to evaluate tetrahedral quality. The Radius Ratio is the
size of a sphere circumscribed by a tetrahedron’s four vertices divided by the size of a circle tangent to a tetrahedron’s
four faces. The Edge Ratio is the ratio of the longest edge length to the shortest edge length. The Collapse Ratio
is the minimum ratio of height of a vertex above the triangle opposite it, divided by the longest edge of the opposing
triangle across all vertex/triangle pairs.

HexQualityMeasure indicates which quality measure will be used to evaluate quality of hexahedral cells.

1.5.10 White-box filters

This includes the Programmable Filter and Programmable Source . For these filters/sources, you can add Python
code to do the data generation or processing. We’ll cover writing Python code for these in Section 2.4.

1.5.11 Favorite filters

If you use some filters more than others, you can organize them in the Filters > Favorites menu. This can be done from
the context menu in the pipeline or through the Filters > Manage Favorites menu as shown in Fig. 1.75. In this dialog
you can create categories and subcategories. It supports drag’n’drop operation to sort and move filters and categories.
Moreover, Favorites are highlighted in the other filter submenus on supported platforms. Favorites are saved in user
settings so they can be used in other subsequent ParaView sessions.

112 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.75: The Favorites Manager dialog. Left: the list of available filters. Right: the favorites, organized into cate-
gories.

1.5.12 Best practices

Avoiding data explosion

The pipeline model that ParaView presents is very convenient for exploratory visualization. The loose coupling be-
tween components provides a very flexible framework for building unique visualizations, and the pipeline structure
allows you to tweak parameters quickly and easily.

The downside of this coupling is that it can have a larger memory footprint. Each stage of this pipeline maintains its
own copy of the data. Whenever possible, ParaView performs shallow copies of the data so that different stages of the
pipeline point to the same block of data in memory. However, any filter that creates new data or changes the values or
topology of the data must allocate new memory for the result. If ParaView is filtering a very large mesh, inappropriate
use of filters can quickly deplete all available memory. Therefore, when visualizing large datasets, it is important to
understand the memory requirements of filters.

Please keep in mind that the following advice is intended only for when dealing with very large amounts of data and
the remaining available memory is low. When you are not in danger of running out of memory, the following advice is
not relevant.

When dealing with structured data, it is absolutely important to know what filters will change the data to unstructured.
Unstructured data has a much higher memory footprint, per cell, than structured data because the topology must be
explicitly written out. There are many filters in ParaView that will change the topology in some way, and these filters
will write out the data as an unstructured grid, because that is the only dataset that will handle any type of topology
that is generated. The following list of filters will write out a new unstructured topology in its output that is roughly
equivalent to the input. These filters should never be used with structured data and should be used with caution on
unstructured data.

Append Datasets Extract Edges Subdivide
Append Geometry Linear Extrusion Tessellate
Clean Loop Subdivision Tetrahedralize
Clean to Grid Reflect Triangle Strips
Connectivity Rotational Extrusion Triangulate
D3 Shrink
Delaunay 2D/3D Smooth

Technically, the Ribbon and Tube filters should fall into this list. However, as they only work on 1D cells in poly data,
the input data is usually small and of little concern.

1.5. Filtering Data 113

ParaView Users Guide Documentation, Release 5.8.1

This similar set of filters also outputs unstructured grids, but also tends to reduce some of this data. Be aware though that
this data reduction is often smaller than the overhead of converting to unstructured data. Also note that the reduction
is often not well balanced. It is possible (often likely) that a single process may not lose any cells. Thus, these filters
should be used with caution on unstructured data and extreme caution on structured data.

Clip Extract Selection
Decimate Quadric Clustering
Extract Cells by Region Threshold

Similar to the items in the preceding list, Extract Subset performs data reduction on a structured dataset, but also
outputs a structured dataset. So the warning about creating new data still applies, but you do not have to worry about
converting to an unstructured grid.

This next set of filters also outputs unstructured data, but it also performs a reduction on the dimension of the data (for
example 3D to 2D), which results in a much smaller output. Thus, these filters are usually safe to use with unstructured
data and require only mild caution with structured data.

Cell Centers Feature Edges
Contour Mask Points
Extract CTH Fragments Outline (curvilinear)
Extract CTH Parts Slice
Extract Surface Stream Tracer

The filters below do not change the connectivity of the data at all. Instead, they only add field arrays to the data. All
the existing data is shallow copied. These filters are usually safe to use on all data.

Block Scalars Octree Depth Scalars
Calculator Point Data to Cell Data
Cell Data to Point Data Process Id Scalars
Curvature Random Vectors
Elevation Resample with dataset
Generate Surface Normals Surface Flow
Gradient Surface Vectors
Level Scalars Texture Map to. . .
Median Transform
Mesh Quality Warp (scalar)
Octree Depth Limit Warp (vector)

This final set of filters either add no data to the output (all data of consequence is shallow copied) or the data they add is
generally independent of the size of the input. These are almost always safe to add under any circumstances (although
they may take a lot of time).

Annotate Time Outline
Append Attributes Outline Corners
Extract Block Plot Global Variables Over Time
Extract Datasets Plot Over Line
Extract Level Plot Selection Over Time
Glyph Probe Location
Group Datasets Temporal Shift Scale
Histogram Temporal Snap-to-Time-Steps
Integrate Variables Temporal Statistics
Normal Glyphs

114 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

There are a few special case filters that do not fit well into any of the previous classes. Some of the filters, currently
Temporal Interpolator and Particle Tracer , perform calculations based on how data changes over time. Thus,
these filters may need to load data for two or more instances of time, which can double or more the amount of data
needed in memory. The Temporal Cache filter will also hold data for multiple instances of time. Keep in mind that
some of the temporal filters such as the Temporal Statistics and the filters that plot over time may need to iteratively load
all data from disk. Thus, it may take an impractically long amount of time even if does not require any extra memory.

The Programmable Filter is also a special case that is impossible to classify. Since this filter does whatever it is
programmed to do, it can fall into any one of these categories.

Culling data

When dealing with large data, it is best to cull out data whenever possible and do so as early as possible. Most large data
starts as 3D geometry and the desired geometry is often a surface. As surfaces usually have a much smaller memory
footprint than the volumes that they are derived from, it is best to convert to a surface early on. Once you do that, you
can apply other filters in relative safety.

A very common visualization operation is to extract isosurfaces from a volume using the Contour filter. The Contour
filter usually outputs geometry much smaller than its input. Thus, the Contour filter should be applied early if it is
to be used at all. Be careful when setting up the parameters to the Contour filter because it still is possible for it to
generate a lot of data which can happen if you specify many isosurface values. High frequencies such as noise around
an isosurface value can also cause a large, irregular surface to form.

Another way to peer inside of a volume is to perform a Slice on it. The Slice filter will intersect a volume with a
plane and allow you to see the data in the volume where the plane intersects. If you know the relative location of an
interesting feature in your large dataset, slicing is a good way to view it.

If you have little a priori knowledge of your data and would like to explore the data without the long memory and
processing time for the full dataset, you can use the Extract Subset filter to subsample the data. The subsampled
data can be dramatically smaller than the original data and should still be well load balanced. Of course, be aware that
you may miss small features if the subsampling steps over them and that once you find a feature you should go back
and visualize it with the full dataset.

There are also several features that can pull out a subset of a volume: Clip , Threshold , Extract Selection ,
and Extract Subset can all extract cells based on some criterion. Be aware, however, that the extracted cells are
almost never well balanced; expect some processes to have no cells removed. All of these filters, with the exception of
Extract Subset , will convert structured data types to unstructured grids. Therefore, they should not be used unless
the extracted cells are of at least an order of magnitude less than the source data.

When possible, replace the use of a filter that extracts 3D data with one that will extract 2D surfaces. For example,
if you are interested in a plane through the data, use the Slice filter rather than the Clip filter. If you are interested
in knowing the location of a region of cells containing a particular range of values, consider using the Contour filter
to generate surfaces at the ends of the range rather than extract all of the cells with the Threshold filter. Be aware
that substituting filters can have an effect on downstream filters. For example, running the Histogram filter after
Threshold will have an entirely different effect than running it after the roughly equivalent Contour filter.

1.5. Filtering Data 115

ParaView Users Guide Documentation, Release 5.8.1

1.6 Selecting Data

A typical visualization process has two components: setting up the visualization scene and performing the analysis of
the results to gain insight. It is not uncommon for this process to be iterative. Often, what you are looking for drives
from what filters you should use to extract the relevant information from the input datasets and what views will best
represent that data. One of the ways of evaluating the results is inspecting the data or probing into it by identifying
elements of interest. ParaView data selection mechanisms are designed specifically for such use-cases. In this chapter,
we take a closer look at various ways of selecting data in ParaView and making use of these selections for data analysis.

1.6.1 Understanding selection

Broadly speaking, selection refers to selecting elements (either cells, points, rows (in case of tabular datasets), etc.)
from datasets. Since data is ingested into ParaView using readers or sources and transformed using filters, when you
create a selection, you are selecting elements from the dataset produced as the output of source, filter, or any such
pipeline module.

There are many ways to create selections. Several views provide means to create specific selections. For example, in
the SpreadSheet View , which shows the data attributes as a spreadsheet, you can simply click on any row to select
that row. You can, of course, use the and CTRL (or) keys to select multiple rows, as in typical spreadsheet-based
applications.

While this seems like an exercise in futility, you are hardly achieving anything by highlighting rows in a spreadsheet.
What transforms this into a key tool is the fact that selections are linked among views (whenever possible). Linked
selection means that you select an element from a dataset in a specific view. All other views that are showing the same
dataset will also highlight the selected elements.

To make this easier, let’s try a quick demo:

Starting with a fresh paraview session, create a sample dataset using the Sources > Wavelet menu, and then click the
Apply button. If you are using paraview with a default setup, that should result in a dataset outline being shown in the
default Render View . Next, let’s split the view and create SpreadSheet View . The SpreadSheet View will au-
tomatically show the data produced by the Wavelet source. Upon closer inspection of the header in the SpreadSheet
View , we see that the view is showing the Point Data or point attributes associated with the dataset. Now we have
the same dataset, the data produced by the Wavelet source, shown in two views. Now, highlight a few rows in the
SpreadSheet View by clicking on them. As soon as you start selecting rows, the Render View will start highlight-
ing some points in space as tiny magenta specks (Fig. 1.76). That’s linked selection in action! What is happening is
that, as you highlight rows in the SpreadSheet View , you are creating a selection for selecting points (since the view
is showing Point Data) corresponding to the rows. Due to the linking of selections between views, any other view
that is showing the dataset (in this case, the Render View) will also highlight the selected points.

Of course, if you want to select cells instead of points, switch the SpreadSheet View to show cells by flipping the
Attribute combo-box to Cell Data and then highlight rows. The Render View will show the selected cells as a
wireframe, rather than points.

Conversely, you could have created the selection in the Render View , and the SpreadSheet View will also highlight
the selected elements. We will see how to create such selection later in this chapter.

The first thing to note is that, when you create a new selection, the existing selection is cleared. Thus, there is at most
one active selection in the application at any given time. As we shall see, certain views provide ways of expanding on
the existing selection.

The second thing to note is that selections are transient, i.e., they cannot be undone/redone or saved in state files
and loaded back. Nor can you apply filters or other transformation to the selections themselves. There are cases,
however, where you may want to subset your dataset using the selection defined interactively and then apply filters
and other analysis to that extracted subset. For that, there are filters available, namely Extract Selection and Plot

116 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.76: Linked selection between views allows you to select elements in a view and view them in all other views
showing the selected data. In this demo, as we select rows in the SpreadSheet View , the corresponding points in the
3D View get highlighted.

1.6. Selecting Data 117

ParaView Users Guide Documentation, Release 5.8.1

Selection Over Time , that can capture the active selection in as the filter parameters and then produce a new dataset
that is comprised of the selected elements.

The third thing to note is that there are different types of selections, e.g., id-based selections, where the selected elements
are identified by their indices; frustum-based selections, where the selected elements are those that intersect a frustum
defined in 3D space; query-based selections, where the selected elements are those that match the specified query string;
and so on.

Did you know?

While, technically, selection is possible using a Python-based API, that API is currently cumbersome and requires
understanding of some of ParaView internals. There are plans to simplify that API in future releases. As a result, we
do not cover Python API for selection in this chapter. Once this new API is available, it will be included in this chapter.

1.6.2 Creating selections using views

Views provide a convenient mechanism for creating selections interactively. Views like Render View can create multi-
ple types of selection (id- or frustum-based selections for selecting points and cells), while others like the SpreadSheet
View and Line Chart View only support one type (id-based selections for points or cells).

Selecting in Render View

To create a selection in the Render View , you use the toolbar at the top of the view frame. There are two ways of
selecting cells, points or blocks in ParaView: interactive and non-interactive.

ParaView enters a non-interactive selection mode when the user clicks one of the non-interactive selection buttons:
The type of selection you are creating will depend on the button you clicked. Once in

non-interactive selection mode, the cursor will switch to cross-hair and you can click and drag to create a selection
region. Once you release the mouse, ParaView will attempt to create a selection for any elements in the selection
region and will go back to default interaction mode.

To create a selection for cells visible in the view, use the button. For selecting visible points, use the button
instead. Visible cells (and points) are only those cells (or points) that are currently rendered on the screen. Thus,
elements that are occluded or are too small to be rendered on the screen will not be selected. If you want to select all

data elements that intersect the view frustum formed by the selection rectangle you drew on the screen, use the

button (or for points). In this case, all elements, visible or otherwise, that are within the 3D space defined by the
selection frustum are selected.

To create a selection for blocks visible in the view use the button. Note that there is no frustum selection for blocks.

While most selection modes allow you to define the selection region as a rectangle, (and for points) enables you
to define the selection region as a closed polygon. However, this is limited to surface elements (i.e., no frustum-based
selection).

ParaView enters an interactive selection mode when the user clicks on one of the interactive selection buttons:
. In interactive selection mode, the user acts on visible elements (cells or points). ParaView highlights elements of

the dataset as a user moves the cursor over them. An element can be selected by clicking on it. Clicking repeatedly on
different elements adds them to the selection. A user ends the interactive selection mode by clicking on the interactive
selection button pushed in or by pressing the Esc key. This mode is also ended when the user enters a non-interactive

selection mode. You can use button to interactively select cells of the dataset and use button to interactively
select points.

118 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

When there are selected elements, the button can be used to clear the selection.

Several of these buttons have hotkeys too, such as S for visible cell selection, D for visible points selection, F for frustum-
based cell selection, and G for frustum-based point selection. If you notice, these are keys are right next to each other
on the keyboard, starting with S, and are in the same order as the toolbar buttons themselves.

Fig. 1.77: Result of a frustum cell selection on disk_out_ref.ex2 dataset showing the frustum used to identify selected
cells. All cells that fall in that frustum or that intersect it are selected, irrespective of whether they were visible from
the view angle when the selection was made.

Did you know?

For id-based visible cell (or point) selection, you can expand the current selection by keeping the CTRL (or) key pressed
when clicking and dragging in selection mode. paraview will then try to add to the current selection by adding the
newly selected elements to the existing one. You can also subtract from the current selection using the , or even toggle

using CTRL (or) + . Selection modifier buttons, in the toolbar, can be used for the same effect. Add : , remove :

, toggle : . These modifiers do not work, however, if the selection type (or the selected data) is different from the
current selection. If so, the current selection will be cleared (as is the norm) and then the new selection will be created.

1.6. Selecting Data 119

ParaView Users Guide Documentation, Release 5.8.1

Selecting in SpreadSheet View

To create a selection in the SpreadSheet View , you simply click on the corresponding rows in the spreadsheet. You
can use the CTRL (or) and keys to add to the selection. Based on which data attribute the view is currently showing,
i.e., Point Data , Cell Data , or Row Data , the selection will select points, cells, or rows, respectively.

Selecting in Line Chart View

Line Chart View enables you to select the elements corresponding to the plotted data values. The selection inter-
action is similar to Render View . By default, you are in the interaction mode. You enter selection mode to create a

selection by using the buttons in the view toolbar for creating a rectangular selection or a polygonal selection .
Once in selection mode, you can click and drag to define the selection region. The selection is created once you release
the mouse press.

When a new selection is created, by default, it will clear any existing selection in the view. The selection modifier

buttons in the view toolbar can be used to control whether a new selection adds to selected elements , removes
points from the selected elements , or toggles it . These modifier buttons are mutually exclusive and modal, i.e.,
they remain pressed until you click to unpress them or until you press another modifier button. CTRL (or) and can also
be used to add to/subtract from the selection.

1.6.3 Creating selections using the Find Data dialog

Views provide mechanisms to create selections interactively. Selections in chart views and SpreadSheet View can
be used to select elements with certain data properties, rather than spatial locations (Fig. 1.78). For a richer data-based
selection for selecting elements matching certain criteria, you can use the Find Data mechanism in paraview.

The Find Data dialog can be accessed from the Edit menu or by using the keyboard shortcut V or the button on
the Main Controls toolbar.

The Find Data dialog can be split into three components, reflecting how you would use this dialog. The Create
Selection component includes UI elements to help you define the selection criteria or the query for defining the
data elements to find. The Current Selection component shows the results from the most recent selection results
in a spreadsheet. Finally, the Selection Display Properties component allows you to control how the selected
elements are shown in the active view.

You can create selections or define queries in the Find Data dialog using the widgets under the Create Selection
group. The UI is designed to be read left-to-right. Thus, you start by specifying which data attributes you are interested
in selecting: cells, points, or rows. Then select which pipeline module is producing the dataset of interest. Once that’s
done, the next step is to specify the selection criteria. The left-most combo-box is used to select the array of interest.
The available options reflect the data array currently available on the dataset. The next combo-box is used to select the
operator. Options include the following:

• is matches a single value

• is between matches a range of values specified by min and max

• is one of matches a list of comma-separated values

• is >= matches all values greater than or equal to the specified value

• is <= matches all values lesser than or equal to the specified value

• is min matches the minimum value for the array for the current time step

• is max matches the maximum value for the array for the current time step

• is less than mean matches values lesser than or equal to the mean

120 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.78: Selection in Line Chart View can be used to locate elements matching attribute criteria. In this visual-
ization, by generating a scatter plot plotting Pres against Temp in the disk_out_ref.ex2 dataset by selecting the top-left
corner of the Line Chart View , we can easily locate elements in the high Pres, low Temp regions in the dataset.

1.6. Selecting Data 121

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.79: The Find Data dialog in paraview can be used to find data elements matching specific conditions. In this
example, we are selecting all Points in disk_out_ref.ex2 dataset where Pres is >= 0.02.

122 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• is greater than mean matches values greater than or equal to the mean

• is equal to mean with tolerance matches values equal to the mean within the specified tolerance

Based on your selection of the operator, input widgets will be shown next to this combo-box, where you enter the
corresponding values. For example, for is between , you enter the min and max values for defining the range in the
two text entry widgets.

Once you are satisfied with the selection criteria, hit the Run Selection Query button to execute the query. On
success, the Current Selection spreadsheet will update to show the selected elements. You switch which element
attributes you are viewing in the spreadsheet using the Show combo-box. Additionally, you can invert the selection by
checking Invert selection .

Similar to selecting in views, once you create a selection, any view showing the selected data will also highlight the
selected elements, if possible. For example, the Render View will show a colored wireframe marking the selected
elements, SpreadSheet View will highlight the rows, etc. The Selection Display Properties group allows
you to change the selection that is shown in the active view. Currently, it is primarily designed for Render View . In
the future, however, it could support changing selection attributes for other views as well. The available options allow
you select the color to use to show the selected elements, as well as the data attributes to use to label the cells/points.

For finer control on the label formatting, color, font, etc., use the . That will pop up the Advanced Selection
Display Properties dialog (Fig. 1.80).

Fig. 1.80: Advanced Selection Display Properties dialog for controlling selection labelling parameters.

Did you know?

Besides creating new selections, the Find Data dialog can also be used to inspect the current selection made from
outside the dialog. For example, if you select elements in the Render View using the options described in Section
Section 1.6.2, the Current Selection component in the Find Data dialog will indeed update to reflect the newly
selected elements. Furthermore, you can change its display properties and extract this selection using the extraction

1.6. Selecting Data 123

ParaView Users Guide Documentation, Release 5.8.1

buttons (which we will cover in Section Section 1.6.6).

1.6.4 Creating selections in Python

Another way to create selections is through ParaView’s Python scripting interface. Python functions exist that are
analogous to the selection operations available in the ParaView Render View and Find Data dialog. Let’s take a
look at an example.

import the selection module
from paraview.selection import *

renderView1 = GetActiveView()

Create an initial rectangular selection in the render view
SelectSurfacePoints(Rectangle=[200, 321, 600, 744], View=renderView1)

Add points within a polygon in the active view
SelectSurfacePoints(Polygon=[180, 200, 190, 400, 322, 300], Modifier='ADD')

Subtract points with another rectangle
SelectSurfacePoints(Rectangle=[300, 400, 500, 700], Modifier='SUBTRACT')

Now extract and show the selected points into another dataset
ExtractSelection()
Show()

Clear the selection
ClearSelection()

The script starts out by importing functions from the paraview.selection module. Next, it creates a reference to
the active render view and passes it into the selection functions. The first selection function selects points visible in the
render view within a rectangular region. The rectangle is defined by bottom left and upper right points, (200, 321) and
(600, 744), given in pixel coordinates.

The second selection is of visible points within a polygon defined by the points (180, 200), (190, 400), and (322,
300). In this call, the selection function modifies the existing selection so that newly selected points are added to the
selection. This is controlled with the Modifier named function parameter. Other options for the Modifier parameter
are 'SUBTRACT' , 'TOGGLE' , and None . When the Modifier is set to None , the previous selection gets replaced
with the new selection. The last call to SelectSurfacePoints subtracts points from the current selection, which is
the combination of the first two selections.

The last lines in this example script extract the currently selected points from the currently active source and shows
them on the screen. Lastly, the selection is cleared with the ClearSelection function.

Selections by point or cell ID numbers are also possible, as shown in this example:

from paraview.selection import *

Select cell 1 from all blocks in a multiblock data set on process 0
SelectIDs(IDs=[0, 1], FieldType='CELL')

Add cell 3 from block 4 on process 0 and cell 5 from block 6 on process 1
to the selection
SelectCompositeDataIDs(IDs=[4, 0, 3, 6, 1, 5], Modifier='ADD')

124 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Finally, selections by query expressions are also possible via the Python selection API. As an example, the following
selects cells that have the maximum value for a cell variable named EQPS in the currently active source:

from paraview.selection import *

QuerySelect(QueryString='EQPS == max(EQPS)', FieldType='CELL')

The complete list of selection functions are briefly described below. For full documentation on these functions, you
can invoke the help function on any of the functions, e.g., help(SelectSurfaceCells) .

• SelectSurfacePoints - Select visible points within a rectangular or polygon region.

• SelectSurfaceCells - Select visible cells within a rectangular or polygon region.

• SelectSurfaceBlocks - Select visible blocks within a rectangular region.

• SelectPointsThrough - Select all points within a rectangular region regardless of their visibility.

• SelectCellsThrough - Select all cells within a rectangular region regardless of their visibility.

• SelectGlobalIDs - Select attributes by global IDs.

• SelectPedigreeIDs - Select attributes by Pedigree IDs.

• SelectIDs - Select attributes by attribute IDs.

• SelectCompositeDataIDs - Select attributes by composite attribute IDs.

• SelectHierarchicalDataIDs - Select attributes by hierarchical data IDs.

• SelectThresholds - Select attributes in a source by thresholding on values in an associated array.

• SelectLocation - Select points by location.

• QuerySelect - Selection by query expression.

• ClearSelection - Clears the selection on the source passed in as a parameter.

1.6.5 Displaying selections

The Find Data dialog provides easy access to changing the Selection Display Properties for the selection
in the active view. The same functionality can also be accessed using the Selection Display Inspector panel,
which is a dockable panel that can be shown/hidden using the View > Selection Display Inspector menu. Currently,
selection display properties apply to Render View s alone. In the future, this will be expanded to other view types, as
appropriate.

The Current Selection section in the Find Data dialog shows the selected elements in a spreadsheet view. You

can also make a regular SpreadSheet View do the same by checking the button in the view toolbar to show only
selected elements.

1.6. Selecting Data 125

ParaView Users Guide Documentation, Release 5.8.1

1.6.6 Extracting selections

All the types of selections created through mechanisms discussed so far are transient and primarily used for highlighting
data. If you want to do further operations on the selected subset, such as extract the selected elements and then save the
result out as a new dataset or apply other filters only on the selected elements, then you need to use one of the extract
selection filters. The Extract Selection and Plot Selection Over Time filters fall in this category of filters.

Extract selection

Fig. 1.81: Properties panel showing the properties for the Extract Selection filter.}

The Extract Selection filter is used to extract the selected elements as a new dataset for further filtering. There
are multiple ways of creating this filter. You can use the conventional method for creating filters, i.e., using the Filters
menu. When the filter is created, if there is any active selection, the filter will automatically copy that selection for
convenience. Another way to extract the active selection is using the Extract Selection button in the Find Data
dialog (Fig. 1.79).

The Properties panel shows what defines the selection. You can update the selection by making a new active selection
using any of the mechanisms described earlier in this chapter and then clicking on the Copy Active Selection button

126 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

on the Properties panel for the Extract Selection filter.

By default, the filter is set up to extract the selected elements alone. This filter also supports passing the entire input
dataset through by simply marking which elements are selected. For that, check the Preserve Topology check box
on the Properties panel.

Plot selection over time

Fig. 1.82: Plot Selection Over Time in action in paraview. The filter provides a convenient way to plot changes
in attributes over time for the selected set of cells or for points in a temporal dataset.

Plot Selection Over Time is similar to Extract Selection in the sense that it too extracts the selected elements
from the input dataset. However, instead of simply extracting the result, the goal here is to plot attributes at the selected
elements over time.

Fig. 1.82 shows an example use of this filter. In this case, we wanted to see how the strain (or EQPS) cell attribute
changes over time for two specific cells that we selected in the Render View using the view-based selection mechanism.
The selected cells are the highlighted elements in the left view. After having selected the cells, we create the Plot

Selection Over Time filter using the Filters > Data Analysis menu. (You could also use the from the Data
Analysis toolbar.) Similar to the Extract Selection filter, when this filter is created, it copies the active selection.
You can change it afterwards using the Copy Active Selection button on the filter’s Properties panel. On hitting
Apply , paraview will show a visualization similar to the one shown here.

Instead of using the view for defining the selection, you could have used the Find Data dialog. In that case, instead
of being able to plot each element over time, you will be plotting summaries for the selected subset over time. This is
essential since the selected subset can have a varying number of elements over time. The summaries include quantities
like mininum, maximum, and median of available variables. You can make the filter always produce these statics alone
(even when the selection is created by selecting specific elements in a view) by checking the Only Report Selection
Statistics property on the Properties panel for the Plot Selection Over Time filter.

1.6. Selecting Data 127

ParaView Users Guide Documentation, Release 5.8.1

1.6.7 Freezing selections

When extracting selections, you can use views or the Find Data dialog to define the selection. Since the extraction
filters are indeed like any other filters in ParaView, they are re-executed any time the input dataset changes, proper-
ties on the filter change, or the current time changes. Every time the filter re-executes, it performs the selection and
extraction operations. Thus, if you created the selection using Render View to create an id-based selection, the filter
will identify which of the elements are of the requested ids and then pass those. For frustum-based selection, it will
determine what elements fall within the frustum and extract those. Similarly, with query-based selections created using
the Find Data dialog, the query is re-evaluated. This can result in the selection of different elements with changes in
timestep. For example, if you are selecting the cells where the strain is maximum, the selected cell(s) will potentially
be different for each time step. Suppose you want to plot the changes in a cell that has maximum strain at the last time
step – how can we do that? The answer is using the Freeze Selection button on the Find Data dialog. What that
does is convert any type of selection (frustum, query-based) to an id-based selection matching the currently selected
element ids. Now you can use this frozen, id-based selection for Extract Selection or Plot Selection Over
Time .

1.7 Animation

In ParaView, you can create animations by recording a series of keyframes. At each keyframe, you set values for
the properties of the readers, sources, and filters that make up the visualization pipeline, as well as the position and
orientation of the camera. Once you have chosen the parameters, you can play through the animation. When you
play the animation, you can cache the geometric output of the visualization pipeline in memory. When you replay the
animation, playback will be much faster because very little computation must be done to generate the images. Also, the
results of the animation can be saved to image files (one image per animation frame) or to a movie file. The geometry
rendered at each frame can also be saved in ParaView’s PVD file format, which can be loaded back into ParaView as
a time varying dataset.

1.7.1 Animation View

Animation View is the user interface used to create animations by adding keyframes. It is modeled similar to popular
animation and keyframe editing applications with the ability to create tracks for animating multiple parameters. The
Animation View is accessible from the View menu.

Fig. 1.83: Animation View.

As seen in Fig. 1.83, this view is presented as a table. Above the table are controls that administer how time progresses
in the animation. These were discussed briefly in ref{sec:DealingWithTime}. Within the table, the tracks of the
animation appear as rows, and animation time is presented as increasing from left-to-right. The first row in the table,

128 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

simply labeled Time, shows the total span of time that the animation can cover. The current displayed time is indicated
both in the Time field at the top and with a thick, vertical, draggable line within the table.

Along the left side of the Animation View is an expandable list of the names of the animation tracks (i.e., a particular
object and property to animate). You choose a data source and then a particular property of the data source in the bottom
row. To create an animation track with keyframes for that property, click the + on the left-hand side; this will create
a new track. In the figure, tracks already exist for SphereSource1’s Phi Resolution property and for the camera’s
position. To delete a track, press the X button. You can temporarily disable a track by unchecking the check box on the
right of the track. To enter values for the property, double-click within the white area to the right of the track name.
This will bring up the Animation Keyframes dialog. Double-clicking in the camera entry brings up a dialog like the
one in Fig. 1.84.

Fig. 1.84: Editing the camera track.

From the Animation Keyframes dialog, you can press New to create new keyframes. You can also press Delete or
Delete All to delete some or all of the keyframes. Clicking New will add a new row to the table. In any row, you can
click within the Time column to choose a particular time for the keyframe, and you can click in the right-hand column
to enter values for the parameter. The exact user interface components that let you set values for the property at the
keyframe time vary. When available, you can change the interpolation between two keyframes by double-clicking on
the central interpolation column.

Within the tracks of the Animation View , the place in time where each keyframe occurs is shown as a vertical line.
The values chosen for the property at that time and the interpolation function used between that value and the next
are shown as text, when appropriate. In the previous figure, for example, the sphere resolution begins at 10 and then
changes to 20, varying by linear interpolation between them. The camera values are too lengthy to show as text so they
are not displayed in the track, but we can easily see that there are four keyframes spaced throughout the animation. The
vertical lines in the tracks themselves may be dragged, so you can easily adjust the time at which each keyframe occurs.

1.7. Animation 129

ParaView Users Guide Documentation, Release 5.8.1

Did you know?

You can quickly add a simple animation track and edit the keyframe without using the Animation View by
using Animation Shortcut . First, enable Show Animation Shortcut from Settings dialog (on the
General tab, search for the option by name or switch to advanced view). Then, several of the animatable

properties on the Properties panel will have a icon. Click this icon to add a new animation track for
this property and edit it.

1.7.2 Animation View header

The Animation View has a header-bar that lets you control some properties of the animation itself, as you can see in
Fig. 1.85.

Fig. 1.85: Animation View Header.

Mode controls the animation playback mode. ParaView supports three modes for playing animation. In Sequence
mode, the animation is played as a sequence of images (or frames) generated one after the other and rendered in
immediate succession. The number of frames is controlled by the No. Frames spinbox at the end of the header. Note
that the frames are rendered as fast as possible. Thus, the viewing frame rate depends on the time needed to generate
and render each frame.

In Real Time mode, the Duration spinbox (replacing the No. Frames spinbox) indicates the time in seconds over
which the entire animation should run. Each frame is rendered using the current wall clock time in seconds, relative to
the start time. The animation runs for nearly the number of seconds specified by the Duration (secs) spinbox. In
turn, the number of frames actually generated (or rendered) depends on the time to generate (or render) each frame.

In Snap To TimeSteps mode, the number of frames in the animation is determined by the number of time values
in the dataset being animated. This is the animation mode used for ParaView’s default animations: playing through
the time values in a dataset one after the other. Default animations are created by ParaView when a dataset with time
values is loaded; no action is required to create the animation. Note that using this mode when no time-varying data is
loaded will result in no animation at all.

In Sequence mode, the final item in the header is the No. Frames spinbox. This spinbox lets you pick the total
number of frames for the animation. Similarly, in Real Time mode, the final line lets you choose the duration of the
animation. In Snap To TimeSteps mode, the total number of frames is dictated by the dataset and, therefore, the
spinbox is disabled.

The Time entry-box shows the current animation time, which is the same as shown by a vertical marker in this view.
You can change the current animation time by either entering a value in this box, if available, or by dragging the vertical
marker. The Start Time and End Time entry-boxes display the start and end times for the animation. By default,
when you load time varying datasets, the start and end times are automatically adjusted to cover the entire time range
present in the data. The lock check-buttons to the right of the Start Time and End Time widgets will prevent this
from happening, so that you can ensure that your animation covers a particular time domain of your choosing.

130 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Did you know?

You can change the precision (number of significant digits) displayed by the animation clock by changing
the Animation Time Precision value under Settings/Properties Panel Options/Advanced .

1.7.3 Animating time-varying data

When you load time-varying data, ParaView automatically creates a default animation that allows you to play through
the temporal domain of the data without manually creating an animation to do so. With the Animation View , you
can uncouple the data time from the animation time so that you can create keyframes that manipulate the data time
during animation as well.

If you double-click in the TimeKeeper – Time track, the Animation Keyframes dialog, an example of which is
shown in Fig. 1.86, appears. In this dialog, you can make data time progress in three fundamentally different ways.
If the Animation Time radio-button is selected, the data time will be tied to and scaled with the animation time so
that, as the animation progresses, you will see the data evolve naturally. If you want to ignore the time varying nature
of the data, you can select Constant Time instead. In this case, you choose a particular time value at which the data
will be displayed for the duration of the animation. Finally, you can select the Variable Time radio-button to have
full control over data time and to control it as you do any other animatible property in the visualization pipeline. In the
example shown in Fig. 1.86, time is made to progress forward for the first 15 frames of the animation, backward for the
next 30, and forward for the final 15.

1.7.4 Playing an animation

Once you have designed your animation, you can play through it with the VCR controls toolbar seen in Fig. 1.12.

1.7.5 Animating the camera

Just like you can change parameters on sources and filters in an animation, you can also change the camera parameters.
As seen in Fig. 1.88, you can add animation tracks to animate the camera for all the 3D render views in the setup
separately. To add a camera animation track for a view, with the view selected, click on the + button after choosing
Camera from the first drop-down menu. The second drop-down list allows you to choose how to animate the camera.
There are three possible options, each of which provides different mechanisms to specify the keyframes. It’s not possible
to change the mode after the animation track has been added, but you can simply delete the track and create a new one.

1.7. Animation 131

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.86: Controlling Data Time with keyframes.

Fig. 1.87: VCR Controls and Current Time Controls toolbars in paraview.

Fig. 1.88: Add camera track.

132 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Interpolate camera locations

In this mode, you specify camera position, focal point, view angle, and up direction at each keyframe. The animation
player interpolates between these specified locations. As with other parameters, to edit the keyframes, double-click on
the track. It is also possible to capture the current location as a keyframe by using the Use Current button.

Fig. 1.89: Setting animation parameters.

It can be quite challenging to add keyframes correctly and frequently to ensure that the animation results in a smooth
visualization using this mode.

Orbit

This mode makes it possible to quickly create a camera animation in which the camera revolves around objects of
interest. Before adding the Camera track, select the objects in the pipeline browser that you want to revolve around;
then choose Orbit from the Camera combo-box in the Animation View , and hit + . This will pop up a dialog
where you can edit the orbit parameters such as the center of revolution, the normal for the plane of revolution, and the
origin (i.e., a point on the plane where the revolution begins). By default, the Center is the center of the bounds of
the selected objects, the Normal is the current up direction used by the camera, while the origin is the current camera
position.

1.7. Animation 133

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.90: Creating a camera orbit.

Follow path

In this mode, you get the opportunity to specify the path taken by the camera position and the camera focal point. By
default, the path is set up to orbit around the selected objects. You can then edit the keyframe to change the paths.

Fig. 1.91 shows the dialog for editing these paths for a keyframe. When Camera Position or Camera Focus is selected,
a widget is shown in the 3D view that can be used to set the path. Use CTRL + Left Click to insert new control points,
and + Left Click to remove control points. You can also toggle when the path should be closed or not.

1.8 Saving Results

In this chapter, we will introduce various ways of saving visualization results in ParaView. Results generated through-
out the visualization process not only include the images and the rendering results, but also include the datasets gen-
erated by filters, the scene representations that will be imported into other rendering applications, and the movies
generated from animations.

1.8.1 Saving datasets

You can save the dataset produced by any pipeline module in ParaView, including sources, readers, and filters. To save
the dataset in paraview, begin by selecting the pipeline module in the Pipeline browser to make it the active source.
For modules with multiple output ports, select the output port producing the dataset of interest. To save the dataset, use

the File > Save Data menu or the button in the Main Controls toolbar. You can also use the keyboard shortcut
CTRL + S (or + S). The Save File dialog (Fig. 1.92) will allow you to select the filename and the file format. The
available list of file formats depends on the type of the dataset you are trying to save.

On accepting a filename and file format to use, paraview may show the Configure Writer dialog (Fig. 1.93). This
dialog allows you to further customize the writing process. The properties shown in this dialog depend on the selected
file format and range from enabling you to Write All Time Steps , to selecting the attributes to write in the output
file.

134 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.91: Creating a camera path.

Fig. 1.92: Save File dialog in paraview.

1.8. Saving Results 135

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.93: Configure Writer dialog in paraview shown when saving a dataset as a csv file.

136 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

In pvpython too, you can save the datasets as follows:

Saving the data using the default properties for
the used writer, if any.
>>> SaveData("sample.csv", source)

the second argument is optional, and refers to the pipeline module
to write the data from. If none is specified the active source is used.

To pass parameters to configure the writer
>>> SaveData("sample.csv", source,

Precision=2,
FieldAssociation='Cells')

pvpython will pick a writer based on the file extension and the dataset type selected for writing, similar to what it does
in paraview. Admittedly, it can be tricky to figure out what options are available for the writer. The best way is to
use the Python tracing capabilities in paraview and to use the generated sample script as a reference (Section 1.1.6).
Make sure you use a similar type of dataset and the same file format as you want to use in your Python script, when
tracing, to avoid runtime issues.

1.8.2 Saving rendered results

Views that render results (this includes almost all of the views, except SpreadSheet View) support saving images
(or screenshots) in one of the standard image formats (PNG, JPEG, TIFF, BMP, PPM). Certain views also support
exportings the results in several formats such as PDF, X3D, and VRML.

Saving screenshots

To save the render image from a view in paraview, use the File > Save Screenshot menu option. When selected, a
file dialog will appear where you can select the file path and format to which the screenshot should be saved. After
selecting the image file, the Save Screenshot Options dialog (Fig. 1.94) will be shown. This dialog allows you to
select various parameters that controls what image is saved out and how.

If your visualization setup only has 1 view the active tab, then you’ll be presented with options shown in (Fig. 1.94).
The available options are as follows.

• Image Resolution : This is the target image resolution in pixels. By default, it is set to the current view
dimensions. You can change it as needed. If the resolution larger than the current resolution, then ParaView will
use tiling to render the full image in multiple stages. For reliable results, you may want to present the current
aspect ratio. You can use Tools > Lock View Size Custom to lock the view size to a suitable aspect ratio.

• Font Scaling : When a resolution larger than the current resolution is specified, this allows you to control how
the fonts are to be scaled. Default Scale fonts proportionally tries to achieve WYSIWYG as long as the
aspect ratio is maintained. This is suitable for saving images targeted for higher DPI (or PPI) display than your
screen. Do not scale fonts may be used to avoid font scaling and keep their size in pixels the same as what
is currently on the screen. This is suitable for saving images targeted for a larger display with the same pixel
resolution.

• Override Color Palette : Optionally change the color palette just for saving the screenshot using this drop-
down.

• Stereo Mode : This option lets you save the image using one of the supported stereo modes.

• Transparent Background : If the file format supports it, you can check this option to save the images with a
transparent background rather than the current background color.

1.8. Saving Results 137

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.94: The Save Screenshot Options dialog, which is used to customize saving screenshots in paraview.

138 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

• Format : This shows the file format selected in the file save dialog.

For formats that have different options like compression levels, format-specific options are presented in the Save
Screenshot Options dialog. The PNG format has a Compression Level option that ranges from 0 (no com-
pression) to 9 (maximum compression). The JPEG format options are Quality , which ranges from 0 to 100, and
Progressive , which enables saving the file as a progressive JPEG. The TIFF file format has a Compression option
with possible values None , PackBits , and Deflate . The BMP file format has no options.

If the active tab has more than one view, then the Save Screenshot Options dialog has a few more options as shown
in Fig. 1.95.

Fig. 1.95: Extra options in Save Screenshot Options dialog available when the active tab has more than 1 view.

• Save All Views : Check this to save all the views in the active tab laid out exactly as in the UI. If unchecked,
only the active view will be saved.

• Separator Options : These control the separator drawn between the views in the generated image. You can
specify the Separator Width in approximate pixels as well as the Separator Color .

To save a screenshot in pvpython, you use SaveScreenshot .

Save a screenshot from a specific view.
>>> myview = GetActiveView()
>>> SaveScreenshot("aview.png", myview)

Save all views in a tab
>>> layout = GetLayout()
>>> SaveScreenshot("allviews.png", layout)

To save a specific target resolution, rather than using the
the current view (or layout) size, and override the color palette.
>>> SaveScreenshot("aviewResolution.png", myview,

ImageResolution=[1500, 1500],
OverrideColorPalette="Black Background")

As always, you can use Python tracing in paraview to trace the exact form of the method to use to save a specific
screenshot image.

1.8. Saving Results 139

ParaView Users Guide Documentation, Release 5.8.1

Exporting scenes

When available, you can export a visualization in a view in several of the supported formats using the File > Export
View menu option in paraview. For a Render View (or similar), the available formats include Cinema Database,
EPS, PDF, PS, SVG, POV, VRML, WebGL, X3D, and X3DB. On selecting a file as which to export, paraview may
pop up an Export Options dialog that allows you to set up parameters for the exporter, similar to saving datasets (
Section 1.8.1).

In addition, from pvpython, exporting takes the following form (again, just use Python trace to figure out the proper
form – that’s the easiest way).

>>> myview = GetActiveView()
>>> ExportView('/tmp/sample.svg', view=myview,

Plottitle='ParaView GL2PS Export',
Compressoutputfile=1)

the arguments after 'view' depend on the exporter selected.

1.8.3 Saving animation

To save an animation as a series of images or a video file, you use the File > Save Animation menu option. This pops up
a file save dialog where you choose where to save the file and which format to use. After selecting the file and format,
the Save Animation Options dialog (Fig. 1.96) is display. This dialog is nearly a clone of the Save Screenshot
Options dialog (Fig. 1.94), including, optionally, the extra multiview options from Fig. 1.95, with additional format-
specific compression options and a few animation-specific parameters. These are as follows:

• Frame Rate : When saving the animation as a video file (AVI or Ogg) rather than a series of images, this lets
you specify the frame rate for the generated video. It has no effect when saving as a series of images.

• Frame Window : If you didn’t want to save out the full animation, instead limit to a specific window, you can
use this to specify the range of frames to save. If you are generating a animation from a temporal dataset with
timesteps, the frame generally corresponds to the timestep number.

On accepting this dialog, you will be able to choose the output file location and format. The available file formats
include AVI and Ogg (when available) video formats, as well as image formats such PNG, JPEG, and TIFF. If saving
as images, ParaView will generate a series of image files sequentially numbered using the frame number as a suffix to
the specified filename.

To save animations in pvpython, you use SaveAnimation . The arguments to this function are same as the
SaveScreenshot with additional parameters for the animation specific options.

>>> SaveAnimation('animation.avi', GetActiveView(),
FrameWindow = [1, 100],
FrameRate = 1)

1.8.4 Saving state

Besides saving the results produced by your visualization setup, you can save the state of the visualization pipeline itself,
including all the pipeline modules, views, their layout, and their properties. This is referred to as the Application
State , or just State . In paraview, you can save the state using the File > Save State. . . menu option. Conversely,
to load a saved state file, you can use File > Load State. . . .

There are two types of state files that you can save in paraview: ParaView state file (*.pvsm) and Python state file
(*.py). The PVSM files are XML-based text files that are human and machine readable, although not necessarily
human friendly for a novice user. However, if you don’t plan to read and make sense of the state files, PVSM is the
most robust and reliable way to save the application state. For those who want to save the state and then modify it

140 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.96: The Save Animation Options dialog in paraview, which is used to customize saving of animation.

1.8. Saving Results 141

ParaView Users Guide Documentation, Release 5.8.1

manually, using Python state files may be better, as using Python trace simply traces the actions that you perform in the
UI as a Python script. Python state files, on the other hand, save the entire current state of the application as a Python
script that you can use in paraview or the Python Shell .

Fig. 1.97: The Save State File dialog in paraview.

To load a state file, you use the File > Load State. . . menu. Note that loading a state file will affect the current
visualization state.

If you load a PVSM file this way you will be asked where to search for the data files. There are three available options:
Use File Names From State , Search files under specified directory and Choose File Names . If
you select Use File Names From State then ParaView will look for the data at the absolute paths saved in the
state file. If you select Search files under specified directory then you will see an option to browse for a
directory that ParaView will search for the files before looking for them in the absolute path in the state file. This
defaults to the location of the state file to make sharing state files between computers easier. If you select Choose
File Names then you will be given a list of file names in the state file and can override each one individually.

You can save/load the PVSM state file in pvpython as follows:

>>> from paraview.simple import *

Save the PVSM state file. Currently, this doesn't support
saving Python state files.
>>> SaveState("sample.pvsm")

To load a PVSM state file.
>>> LoadState("sample.pvsm")

You can also use the options to specify file locations when loading PVSM files from pvpython as follows:

To load a PVSM state file and specify the directory to search for data files.
>>> LoadState("sample.pvsm", LoadStateDataFileOptions='Search files under specified␣
→˓directory', DataDirectory='/home/user/sampledata')

142 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.98: The Load State Options dialog in paraview showing the options for where to find data files.

Fig. 1.99: The Load State Options dialog in paraview showing the Search files under specified
directory option.

1.8. Saving Results 143

ParaView Users Guide Documentation, Release 5.8.1

You can use LoadStateDataFileOptions='Choose File Names' too, but you may need to use the Python trace
function in paraview (see Section 1.1.6) to determine the names of the parameters to pass in to LoadState . They
differ among readers.

1.8.5 Extractors

Section 1.8.1 and Section 1.8.2 are two ways of saving datasets and images using actions, i.e., you click a button (or
in Python, invoke a function) and the results are saved out immediately. If, for example, you now want to generate the
results for another timestep, you have to repeat all the actions. One way to avoid this is to put together a Python script
to generate the data and image files and then use that as a macro. An easier way is to use extractors . Extractors
are a type of pipeline module, similar to sources and filters, but behave more like writers. Similar to filters, they have
inputs, unlike sources or filters, however, they produce no output that can be consumed by another pipeline module.
Instead, when activated, they generate files – which we call extracts.

Since they are just another pipeline module, you use similar mechanisms as sources and filters for creating and config-
uring these. You use the Extractors menu to create them. The Pipeline Browser shows all the extractors present in
the visualization. You select one of them by clicking on it in the Pipeline Browser at which point the Properties
panel will update to show parameters on the selected extractor.

There are two types of extractors: data extractors and image extractors. The former generate files from datasets produced
by sources and filters, while the latter save out rendering results from views. When created, a data extractor by default
uses the active source as the input (similar to filters) which an image extractor uses the active view instead.

Extractor Properties

You use the Properties panel view and change extractor properties. The available properties can be grouped into
two major groups: first are Trigger properties which are common to all extractors, and the second are the Writer
properties which are parameters specific to type of writer the extractor uses.

Trigger properties define when the extractor is activated i.e. under what conditions does the extractor produce extracts.
Currently, we support time-based controls. You can select the Start Time Step , End Time Step or the Frequency
at which to generate the results. Frequency is the number of timesteps per activation thus to write every other timestep,
set the Frequency to 2, to write every 3rd timestep, set it to 3, and so on.

Writer properties are specific to the writer. For data extractors, these will be similar to the writer properties shown in
the Configure Writer dialog for the writer described in Section Section 1.8.1. For image extractors, they are similar
to the Save Screenshot Options dialog described in Section Section 1.8.2. The Writer properties also lets you set
a File Name . This is the file name to use to save the extracts. Since extractors are designed to generate a new extract
every time they are activated, the File Name supports patterns that let you make the filename unique per activation.
%ts or %t in the filename are replaced by the timestep index and the time value for each activation. You add leading
zeros (or other prefixes) to the numbers using a form such as %.06ts. There the timestep will be padded with zeros if
the number of digits is less than 6. You should not use absolute paths for specifying the filenames here. We will see
how to select prefix to store these extracts under in the next section.

144 Chapter 1. Paraview User’s Guide

ParaView Users Guide Documentation, Release 5.8.1

Fig. 1.100: Properties panel showing properties on an image extracts generator for PNG files.

1.8. Saving Results 145

ParaView Users Guide Documentation, Release 5.8.1

Saving Extracts

Fig. 1.101: Save Extracts Options dialog shown on File > Save Extracts. . . .

Once the extractors have been setup, you can trigger the saving of extract using File > Save Extracts. . . . This will pop up
the Save Extract Options dialog which lets you configure the extract generation. Extracts Output Directory
specifies the root directories under which all extracts are saved. Check Generate Cinema Specification to gener-
ate a data.csv file under the chosen extracts output directory that summarizes the generated extracts. This can be then
used with viewers provided by the Cinema Science project to explore the generated extracts.

Hit Ok and ParaView will animate through all timesteps (similar to using the VCR Controls), activating extractors
based on their trigger criteria and then generating extracts. On successful completion you should have files under the
chosen root directories.

Fig. 1.102: Python State Options dialog shown when saving a Python state file using File > Save State.

In addition to generating extracts using the GUI, you can use pvpython or pvbatch to generate extract offline. Thus
is especially handy for HPC use-cases; you can setup your state using an interactive session and once done save out the
state and schedule a non-interactive job for the potentially time-consuming extract generation stage. To do so, setup

146 Chapter 1. Paraview User’s Guide

https://cinemascience.github.io/

ParaView Users Guide Documentation, Release 5.8.1

your visualization pipeline including the extractors as normal. Then, instead of using Save Extracts , use File >
Save State. . . ` and save out a Python state file. The Python State Options dialog has a section similar to Save
Extracts Options dialog for choosing Extracts Output Directory and Generate Cinema Specification.
Click Ok to save the Python script. The Python script has a section near the end of the end as follows:

if __name__ == '__main__':
generate extracts
SaveExtracts(ExtractsOutputDirectory='extracts')

This is what causes the Python script to save the extracts when the script is executed using pvbatch or pvpython.

1.8. Saving Results 147

ParaView Users Guide Documentation, Release 5.8.1

148 Chapter 1. Paraview User’s Guide

CHAPTER

TWO

PARAVIEW REFERENCE MANUAL

2.1 Properties Panel

The Properties panel is perhaps the most often used panel in paraview. This is the panel you would use to change
properties on modules in the visualization pipeline, including sources and filters, to control how they are displayed
in views using the Display properties, and to customize the view itself. In this chapter, we take a closer look at the
Properties panel to understand how it works.

2.1.1 Anatomy of the Properties panel

Before we start dissecting the Properties , remember that the Properties panel works on active objects, i.e., it
shows the properties for the active source and active view, as well as the display properties, if any, for active source in
the active view.

Buttons

Fig. 2.1 shows the various parts of the Properties panel. At the top is the group of buttons that let you accept, reject
your changes to the panel or Delete the active source.

Did you know?

You can delete multiple sources by selecting them using the CTRL (or) key when selecting in the Pipeline Browser
and then clicking on the Delete button. Sometimes, the Delete button may be disabled. That happens when the
selected source(s) have other filters connected to them. You will need to delete those filters first.

Search box

The Search box allows you to search for a property by using the name or the label for the property. Simply start typing
text in the Search box, and the panel will update to show widgets for the properties matching the text.

The Properties panel has two modes that control the verbosity of the panel: default and advanced. In the default
mode, a smaller subset of the available properties is shown. These are generally the frequently used properties for the
pipeline modules. In advanced mode, you can see all the available properties. You can toggle between default and

advanced modes using the button next the Search box.

When you start searching for a property by typing text in the Search box, irrespective of the current mode of the panel
(i.e., default or advanced), all properties that match the search text will be shown.

149

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.1: Properties Panel in paraview
150 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Did you know?

The Search box is a recurring widget in paraview. Several other panels and dialog boxes, including the Settings
dialog and the Color Map Editor , show a similar widget. Its behavior is also exactly the same as in the case of the

Properties panel. Don’t forget that the button can be used to toggle between default and advanced modes.

Properties

The Properties , Display , and View sections in the panel show widgets for properties on the active source, its
display properties in the active view, and the properties for the active view, respectively. You can collapse/expand each
of these sections by clicking on the section name.

To the right of each section name is a set of four buttons. Clicking the copies the current set of property values to

the clipboard while clicking the will paste those property values into another compatible panel section. Note that
the paste icon is enabled only for panel sections where the copied properties can be pasted.

The next two buttons and enable customizing the default values used for those properties. Refer to Section
2.11.2 to learn more about customizing default property values.

2.1.2 Customizing the layout

The Properties panel, by default, is set up to show the source, display, and view properties on the same panel. You
may, however, prefer to have each of these sections in a separate dockable panel. You can indeed do so using the
Settings dialog accessible from the Edit > Settings menu.

On the General tab search of the properties panel using the Search box, you should see the setting that lets you
pick whether to combine all the sections in one (default), to separate out either the Display or View sections in a panel,
or to create separate panels for each of the sections. You will need to restart paraview for this change to take effect.
Also, since the Apply and Reset buttons only apply to the Properties section, they will only be shown in the dock
panel that houses it.

2.2 Color maps and transfer functions

One of the first things that any visualization tool user does when opening a new dataset and looking at the mesh is to
color the mesh with some scalar data. Color mapping is a common visualization technique that maps data to color,
and displays the colors in the rendered image. Of course, to map the data array to colors, we use a transfer function.
A transfer function can also be used to map the data array to opacity for rendering translucent surfaces or for volume
rendering. This chapter describes the basics of mapping data arrays to color and opacity.

2.2. Color maps and transfer functions 151

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.2: Options for customizing the Properties panel layout using the Settings (left). View properties in a
separate dock panel (right).

152 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.2.1 The basics

Color mapping (which often also includes opacity mapping) goes by various names including scalar mapping and
pseudo-coloring. The basic principle entails mapping data arrays to colors when rendering surface meshes or volumes.
Since data arrays can have arbitrary values and types, you may want to define to which color a particular data value
maps. This mapping is defined using what are called color maps or transfer functions. Since such mapping from data
values to rendering primitives can be defined for not just colors, but opacity values as well, we will use the more generic
term transfer functions.

Of course, there are cases when your data arrays indeed specify the red-green-blue color values to use when rendering
(i.e., not using a transfer function at all). This can controlled using the Map Scalars display property. Refer to Chapter
sec:RenderView:DisplayProperties for details. This chapter relates to cases when Map Scalars is enabled, i.e.,
when the transfer function is being used to map arrays to colors and/or opacity.

In ParaView, you can set up a transfer function for each data array for both color and opacity separately. ParaView
associates a transfer function with the data array identified by its name. The same transfer function is used when
coloring with the same array in different 3D views or results from different stages in the pipeline. You can also use
Section 2.2.2 to have independant color map by array name and representation.

For arrays with more than one component, such as vectors or tensors, you can specify whether to use the magnitude or
a specific component for the color/opacity mapping. Similar to the transfer functions themselves, this selection of how
to map a multi-component array to colors is also associated with the array name. Thus, two pipeline modules being
colored with the arrays that have the same name will not only be using the same transfer functions for opacity and color,
but also the component/magnitude selection.

Common Errors

Beginners find it easy to forget that the transfer function is associated with an array name and, hence, are surprised
when changing the transfer function for a dataset being shown in one view affects other views as well. Using different
transfer functions for the same variable is discouraged by design in ParaView, since it can lead to the misinterpretation
of values. If you want to use different transfer functions, despite this caveat, you can use the Separate Color Map feature
(see Section 2.2.2).

There are separate transfer functions for color and opacity. The opacity transfer function is used for volume rendering,
and it is optional when used for surface renderings.

Color mapping in paraview

You can pick an array to use for color mapping, using either the Properties panel or the Active Variables
Controls toolbar. You first select the array with which to color and then select the component or magnitude for
multi-component arrays. ParaView will either use an existing transfer function or create a new one for the selected
array.

Color mapping in pvpython

Here’s a sample script for coloring using a data array from the disk_out_ref.ex2 dataset.

from paraview.simple import *

create a new 'ExodusIIReader'
reader = ExodusIIReader(FileName=['disk_out_ref.ex2'])
reader.PointVariables = ['V']
reader.ElementBlocks = ['Unnamed block ID: 1 Type: HEX8']

(continues on next page)

2.2. Color maps and transfer functions 153

ParaView Users Guide Documentation, Release 5.8.1

154 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.3: The controls used for selecting the array to color within the Properties panel (top) and the Active
Variables Controls toolbar (bottom).

(continued from previous page)

show data in view
display = Show(reader)

set scalar coloring
ColorBy(display, ('POINTS', 'V'))

rescale color and/or opacity maps used to include current data range
display.RescaleTransferFunctionToDataRange(True)

The ColorBy function provided by the simple module ensures that the color and opacity transfer functions are set up
correctly for the selected array, which is using an existing one already associated with the array name or is creating a
new one. Passing None as the second argument to ColorBy will display scalar coloring.

2.2.2 Editing the transfer functions in paraview

In paraview, you use the Color Map Editor to customize the color and opacity transfer functions. You can toggle
the Color Map Editor visibility using the View > Color Map Editor menu option.

As shown in Fig. 2.4, the panel follows a layout similar to the Properties panel. The panel shows the properties for
the transfer function, if any, used for coloring the active data source (or filter) in the active view. If the active source if
not visible in the active view, or is not employing scalar coloring, then the panel will be empty.

Similar to the Properties panel, by default, the commonly used properties are shown. You can toggle the visibility of

advanced properties by using the button. Additionally, you can search for a particular property by typing its name

2.2. Color maps and transfer functions 155

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.4: Color Map Editor panel in paraview showing the major components of the panel.
156 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

in the Search box.

Whenever the transfer function is changed, we need to re-render, which may be time consuming. By default, the panel

requests a render on every change. To avoid this, you can toggle the button. When unchecked, you will need to
manually update the panel using the Render Views button.

The button restores the application default settings for the current color map.

The and buttons save the current color and opacity transfer function, with all its properties, as the default
transfer function. ParaView will use it next time it needs to set up a transfer function to color a new data array. The

button saves the transfer function as default for an array of the same name while the button saves the transfer
function as default for all arrays. Note that this will not affect transfer functions already setup. Also this is saved across
sessions, so ParaView will remember this even after restart.

Separate Color Map

Fig. 2.5: The Separate Color Map button

In order to force ParaView to use a separate color map on the current Active Representation, click on the button shown
in Fig. 2.5. A separate color map is not shared across representations by name, but is instead uniquely associated with
the array name and the representation.

This can also easily be done in Python:

from paraview.simple import *

Wavelet()
wavelet1Display = Show()
wavelet1Display.SetRepresentationType('Surface')

set scalar coloring
ColorBy(wavelet1Display, 'RTData')

set the usage of a Separate Color Map
wavelet1Display.UseSeparateColorMap = True

or use the ColorBy interface directly
ColorBy(wavelet1Display, 'RTData', separate = True)

display the same data in another view for comparison with different color map
get layout
layout1 = GetLayout()

split cell
layout1.SplitHorizontal(0, 0.5)

renderView1 = GetActiveView()

(continues on next page)

2.2. Color maps and transfer functions 157

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

Create a new 'Render View'
renderView2 = CreateView('RenderView')

place view in the layout
layout1.AssignView(2, renderView2)

set active view
SetActiveView(renderView2)

wavelet2Display = Show()
wavelet2Display.SetRepresentationType('Surface')

Use the ColorBy interface to create a separated color map
ColorBy(wavelet2Display, 'RTData', separate = True)

get separate color transfer function/color map for 'RTData'
separate_wavelet2Display_RTDataLUT = GetColorTransferFunction('RTData', wavelet2Display,␣
→˓separate=True)

Apply a preset using its name.
separate_wavelet2Display_RTDataLUT.ApplyPreset('Cold and Hot', True)

ResetCamera(renderView1)
ResetCamera(renderView2)
RenderAllViews()

Mapping data

The Mapping Data group of properties controls how the data is mapped to colors or opacity. The transfer function
editor widgets are used to control the transfer function for color and opacity. The panel always shows both the transfer
functions. Whether the opacity transfer function gets used depends on several things:

• When doing surface mesh rendering, it will be used only if Enable opacity mapping for surfaces is
checked

• When doing volume rendering, the opacity mapping will always be used.

To map the data to color using a log scale, rather than a linear scale, check the Use log scale when mapping
data to colors . It is assumed that the data is in the non-zero, positive range. ParaView will report errors and try
to automatically fix the range if it is ever invalid for log mapping.

The range of a color map is a very important property that controls the mapping of data values to colors. The range
can be automatically updated in a number of situations for convenience. How the range is updated is controlled by the
Automatic Rescale Range Mode property in the Color Map Editor . When Never is selected, the data range
will never be updated automatically. When Grow and update on 'Apply' is selected, ParaView will grow the
color/opacity map range to include the current data range every time you hit Apply on the Properties panel. Thus,
when the data range changes, if the timestep is changed, the color/opacity map range won’t be affected. To grow the
range on change in timestep as well, use the Grow and update every timestep option. Now the range will be
updated on Apply as well as when the timestep changes. Grow indicates that the color/opacity map range will only be
increased, never shrunk, to include the current data range. If you want the range to match the current data range exactly,
then you should use the Clamp and update every timestep option. Now the range will be clamped to the exact
data range each time you hit Apply on the Properties panel or when the timestep changes. The initial value for the
Automatic Rescale Range Mode is controlled by the General setting Transfer Function Reset Mode in the

158 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.6: Transfer function editor and related properties

2.2. Color maps and transfer functions 159

ParaView Users Guide Documentation, Release 5.8.1

Settings dialog (see Section 2.11.1).

Transfer function editor

Using the transfer function editors is pretty straightforward. Control points in the opacity editor widget and the color
editor widget are independent of each other. To select a control point, click on it. When selected, the control point is
highlighted with a red circle and data value associated with the control point is shown in the Data input box under the
widget. Clicking in an empty area will add a control point at that location. To move a control point, click on the control
point and drag it. You can fine tune the data value associated with the selected control point using the Data input box.
To delete a control point, select the control point and then type the Delete key. Note that the mouse pointer should be
within the transfer function widget for Qt to send the event to the editor widget correctly. While the end control points
cannot be moved or deleted, you can rescale the entire transfer function to move the control points, as is explained later.

In the opacity transfer function widget, you can move the control points vertically to control the opacity value associated
with that control point. In the color transfer function widget, you can double click on the control point to pop up a color
chooser widget to set the color associated with that control point.

The opacity transfer function widget also offers some control over the interpolation between the control points. Double
click on a control point to show the interpolation control widget, which allows for changing the sharpness and midpoint
that affect the interpolation. Click and drag the control points to see the change in interpolation.

The several control buttons on the right side of the transfer function widgets support the following actions:

• : Rescales the color and opacity transfer functions using the data range from the data source selected in
the Pipeline browser, i.e., the active source. This rescales the entire transfer function. Thus, all control points
including the intermediate ones are proportionally adjusted to fit the new range.

• : Rescales the color and opacity transfer functions using a range provided by the user. A dialog will be
popped up for the user to enter the custom range.

• : Rescales the color and opacity transfer functions to the range of values for data over all timesteps. This
operation may be costly as data for all timesteps needs to be read.

• : Rescales the color and opacity transfer functions using the range of values for the elements (cells or points)
visible in the view. This operations assigns the entire range of colors to visible elements which may reveal
patterns not visible otherwise.

• : Inverts the color transfer function by moving the control points, e.g,. a red-to-green transfer function will
be inverted to a green-to-red one. This only affects the color transfer function and leaves the opacity transfer
function untouched.

• : Loads the color transfer function from a preset. The Color Preset manager dialog pops up to enable you
to choose one of the color maps included with ParaView or import presets from a file.

• : Saves the current color transfer function to presets. The Color Preset manager dialog pops up to let you
name the transfer function and export the transfer function to a file. The opacity function can also be saved with
the transfer function.

• : This toggles the detailed view for the transfer function control points. This is useful to manually enter
values for the control points rather than using the UI.

160 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Color mapping parameters

Fig. 2.7: Color Mapping Parameters, including advanced properties. Advanced properties are enabled by clicking the
gear icon at the top right of the Color Map Editor (not shown).}

The Color Mapping Parameters group of properties provides additional control over the color transfer function,
including control over the color interpolation space, which is either RGB, HSV, Lab, Diverging, or Lab/CIEDE2000.
To color data values falling below or above the range of the color map with special colors, enable the advanced Use
Below Range Color and Use Above Range Color options, respectively. You can choose different colors for data
falling on either side of the range. When color mapping floating point arrays with NaNs, you can select the color and
opacity to use for NaN values. You can also affect whether the color transfer function uses smooth interpolation or
discretizes the map into a fixed number of colors.

2.2.3 Editing the transfer functions in pvpython

In pvpython, you control the transfer functions by getting access to the transfer function objects and then changing
properties on those. The following script shows how you can access transfer functions objects.

from paraview.simple import *

You can access the color and opacity transfer functions
for a particular array as follows. These functions will
create new transfer functions if none exist.

(continues on next page)

2.2. Color maps and transfer functions 161

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

The argument is the array name used to locate the transfer
functions.
>>> colorMap = GetColorTransferFunction('Temp')
>>> opacityMap = GetOpacityTransferFunction('Temp')

Once you have access to the color and opacity transfer functions, you can change properties on these similar to other
sources, views, etc. Using the Python tracing capabilities to discover this API is highly recommended.

Rescale transfer functions to a specific range
>>> colorMap.RescaleTransferFunction(1.0, 19.9495)
>>> opacityMap.RescaleTransferFunction(1.0, 19.9495)

Invert the color map.
>>> colorMap.InvertTransferFunction()

Map color map to log-scale preserving relative positions for
control points
>>> colorMap.MapControlPointsToLogSpace()
>>> colorMap.UseLogScale = 1

Return back to linear space.
>>> colorMap.MapControlPointsToLinearSpace()
>>> colorMap.UseLogScale = 0

Change using of opacity mapping for surfaces
>>> colorMap.EnableOpacityMapping = 1

Explicitly specify color map control points
The value is a flattened list of tuples
(data-value, red, green, blue). The color components
must be in the range [0.0, 1.0]
>>> colorMap.RGBPoints = [1.0, 0.705, 0.015, 0.149,

5.0, 0.865, 0.865, 0.865,
10.0, 0.627, 0.749, 1.0,
19.9495, 0.231373, 0.298039, 0.752941]

Similarly, for opacity map. The value here is
a flattened list of (data-value, opacity, mid-point, sharpness)
>>> opacity.Points = [1.0, 0.0, 0.5, 0.0,

9.0, 0.404, 0.5, 0.0,
19.9495, 1.0, 0.5, 0.0]

Note, in both these cases the controls points are assumed to be sorted
based on the data values. Also, not setting the first and last
control point to have same data value can have unexpected artifacts
in the 'Color Map Editor' panel.

Oftentimes, you want to rescale the color and opacity maps to fit the current data ranges. You can do this as follows:

>>> source = GetActiveSource()

Update the pipeline, if it hasn't been updated already.
(continues on next page)

162 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> source.UpdatePipeline()

First, locate the display properties for the source of interest.
>>> display = GetDisplayProperties()

Reset the color and opacity maps currently used by 'display' to
use the range for the array 'display' is using for color mapping.
This requires that the 'display' has been set to use scalar coloring
using an array that is available in the data generated. If not, you will
get errors.
>>> display.RescaleTransferFunctionToDataRange()

2.2.4 Color legend

Fig. 2.8: Color legend in ParaView.

The color legend, also known as scalar bar or color bar, is designed to provide the user information about which color
corresponds to what data value in the rendered view. You can toggle the visibility of the color legend corresponding

to the transfer function being shown/edit in the Color Map Editor by using the button near the top of the panel.
This button affects the visibility of the legend in the active view.

Fig. 2.8 shows the various components of the color legend. By default, the title is typically the name of the array (and
component number or magnitude for non-scalar data arrays) being mapped. Automatically generated labels appear on
one side of the color legend, while on the other side are annotations, optionally including start and end annotations
depicting the minimum and maximum of the color legend range.

The color legend can be manipulated with the mouse. You can click and drag the legend to place it at any position in
the view. Additionally, you can change the length of the legend by clicking and dragging the end-markers shown when
you hover the mouse pointer over the legend.

2.2. Color maps and transfer functions 163

ParaView Users Guide Documentation, Release 5.8.1

Color legend parameters

You can edit the color legend parameters by clicking on the button on the Color Map Editor panel. This will
pop up the Edit Color Legend Properties dialog that shows the available parameters. Any changes made will
affect only the particular color legend in the active view.

The first few options in the Edit Color Legend Properties control the orientation and location of the color legend
in the render view. Auto Orient turns on automatic determination of the color legend’s orientation. The color legend
will change orientation to horizontal when it is dragged to the bottom or the top of the render view, and it will change
to vertical when it is dragged to the left or right side. When disabled, you can choose the orientation you want the
color legend to have by choosing an option in the Orientation combo-box. The Window Location option controls
the location of the color legend in the window; if the value AnyLocation is selected, then the color legend will not be
forced into any particular position. The color legend can be positioned by clicking and dragging it with the mouse in
the render view, or the Position property can be specified explicitly with fractional coordinates that range from [0, 1]
and represent the fraction of the window width (or height) where the color legend’s bottom left corner should be placed.
Note that if the color legend is placed interactively with the mouse, the Window Location option will automatically
change to AnyLocation .

Besides the obvious changing of title text and font properties for the title, labels, and annotations, there are some other
parameters that control the appearance of the color legend.

By default, the title is rotated 90 degrees counter-clockwise when the legend is oriented vertically to better align with
the legend. Checking the Horizontal Title box forces the title of the color legend to be horizontal regardless of
color legend orientation.

Draw Annotations determines whether the annotations (including the start and end annotations) are to be drawn at
all.

When checked, Draw Nan Annotation results in the color legend showing the NaN color set in the Color Map
Editor panel in a separate color box right beside the color legend. The annotation text shown for that box can be
modified by changing the Nan Annotation text.

If Automatic Label Format is checked, ParaView will try to pick an optimal representation for numerical values
based on the value and available screen space. By unchecking it, you can explicitly specify the printf-style format
to use for numeric values. To explicitly label values of interest, enable the Use Custom Labels option. You can
specify exactly the labeled values you wish to display in the table that appears when this option is chosen. Color Bar
Thickness is used to control the thickness of the legend. It is defined in terms of points just like how font sizes are
specified. Use Color Bar Length to explicitly set the length of the color bar. This property is defined as a fraction
in the range [0, 1] of the window width (when the color legend is oriented horizontally) or height (when oriented
vertically).

Color legend in pvpython

To show the color legend or scalar bar for the transfer function used for scalar mapping a source in a view, you can use
API on its display properties:

>>> source = ...
>>> display = GetDisplayProperties(source, view)

to show the color legend
>>> display.SetScalarBarVisibility(view, True)

to hide the same
>>> display.SetScalarBarVisibility(view, False)

164 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.9: Edit Color Legend Parameters dialog in paraview.
2.2. Color maps and transfer functions 165

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.10: Color legend showing NaN annotation

To change the color legend properties as in Section 2.2.4, you need to first get access to the color legend object for the
color transfer function in a particular view. These are analogous to display properties for a source in a view.

>>> colorMap = GetColorTransferFunction('Temp')

get the scalar bar in a view (akin to GetDisplayProperties)
>>> scalarBar = GetScalarBar(colorMap, view)

Now, you can change properties on the scalar bar object.
>>> scalarBar.TitleFontSize = 8
>>> scalarBar.DrawNanAnnotation = 1

2.2.5 Annotations

Simply put, annotations allow users to put custom text at particular data values in the color legend. The min and max
data mapped value annotations are automatically added. To add any other custom annotations, you can use the Color
Map Editor .

Since the list of annotations is an advanced property, you need to either toggle the visibility of advanced properties

using the icon near the top of the panel or type annotations in the search box. That will show the Annotations
widget, which is basically a list widget where users can enter key-value pairs, rather than value-annotation pairs, as
shown in Fig. 2.11.

You can use the buttons of the right on the widget to add/remove entries. Enter the data value to annotate under the
Value column and then enter the text to display at that value under the Annotation column.

166 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.11: Widget to add/edit annotations on the Color Map Editor panel

You can use the Tab (tab) key to edit the next entry. Hitting Tab after editing the last entry in the table will auto-
matically result in adding a new row, thus, making it easier to add bunch of annotations without having to click any
buttons.

Some annotation texts may not show up on the legend. There are two possible reasons an annotation may not be
shown. First, the value added is outside the mapped range of the color transfer function. Second, Draw Annotations
is unchecked in the Color Legend Parameters dialog .

The and buttons can be used to fill the annotations widget with unique discrete values from a data array, if
possible. Based on the number of distinct values present in the data array, this may not yield any result (Instead, a

warning message will be shown). The data array values come either from the selected source object if you use the

button or it comes from the visible pipeline objects if you use the button.

Annotations in pvpython

Annotations is a property on the color map object. You simply get access to the color map of interest and then change
the Annotations property.

>>> colorMap = GetColorTransferFunction('Temp')

Annotations are specified as a flattened list of tuples
(data-value, annotation-text)
>>> colorMap.Annotations = ['1', 'Slow',

'10', 'Fast']

2.2. Color maps and transfer functions 167

ParaView Users Guide Documentation, Release 5.8.1

2.2.6 Categorical colors

A picture is worth a thousand words, they say, so let’s just let the picture do the talking. Categorical color maps allow
you to render visualizations as shown in Fig. 2.12.

Fig. 2.12: Visualization using a categorical color map for discrete coloring

When one thinks of scalar coloring, one is typically talking of mapping numerical values to colors. However, in some
cases, the numerical values are not really numbers, but enumerations such as elements types and gear types (as in Fig.
2.12) or generally, speaking, categories. The traditional approach of using an interpolated color map specifying the
range of values with which to color doesn’t really work here. While users could always play tricks with the number of
discrete steps, multiple control points, and annotations, it is tedious and cumbersome.

Categorical color maps provide an elegant solution for such cases. Instead of a continuous color transfer function, the
user specifies a set of discrete values and colors to use for those values. For any element where the data value matches
the values in the lookup table exactly, paraview renders the specified color; otherwise, the NaN color is used.

The color legend or scalar bar also switches to a new mode where it renders swatches with annotations, rather than a
single bar. You can add custom annotations for each value in the lookup table.

Categorical Color: User Interface

To tell paraview that the data array is to be treated as categories for coloring, check the Interpret Values As
Categories checkbox in the Color Map Editor panel. As soon as that’s checked, the panel switches to categorical
mode: The Mapping Data group is hidden, and the Annotations group becomes a non-advanced group, i.e., the
annotations widget is visible even if the panel is not showing advanced properties, as is shown in Fig. 2.13.

The annotations widget will still show any annotations that may have been added earlier, or it may be empty if none
were added. You can add annotations for data values as was the case before using the buttons on the side of the widget.
This time, however, each annotation entry also has a column for color. If color has not been specified, a question mark
icon will show up; otherwise, a color swatch will be shown. You can double click the color swatch or the question mark
icon to specify the color to use for that entry. Alternatively, you can choose from a preset collection of categorical color

maps by clicking the button.

168 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.13: Default Color Map Editor when Interpret Values As Categories is checked.

As before, you can use Tab key to edit and add multiple values. Hence, you can first add all the values of interest in
one pass and then pick a preset color map to set colors for the values added. If the preset has fewer colors than the
annotated values, then the user may have to manually set the colors for those extra annotations.

Common Erros

Categorical color maps are designed for data arrays with enumerations, which are typically integer arrays. However,
they can be used for arrays with floating point numbers as well. With floating point numbers, the value specified for
annotation may not match the value in the dataset exactly, even when the user expects it to match. In that case, the NaN
color will be used.

Categorical colors in pvpython

>>> categoricalColorMap = GetColorTransferFunction('Modes')
>>> categoricalColorMap.InterpretValuesAsCategories = 1

specify the labels for the categories. This is similar to how
other annotations are specified.
>>> categoricalColorMap.Annotations = ['0', 'Alpha', '1', 'Beta']

now, set the colors for each category. These are an ordered list
of flattened tuples (red, green, blue). The first color gets used for
the first annotation, second for second, and so on
>>> categoricalColorMap.IndexedColors = [0.0, 0.0, 0.0,

0.89, 0.10, 0.10]

2.2. Color maps and transfer functions 169

ParaView Users Guide Documentation, Release 5.8.1

2.3 Comparative visualization

Comparative visualization in ParaView refers to the ability to create side-by-side visualizations for comparing with
one another. In its most basic form, you can indeed use ParaView’s ability to show multiple views side by side to set up
simultaneous visualizations. But, that can get cumbersome too quickly. Let’s take a look at a simple example: Let’s say
you want to do a parameter study where you want to compare isosurfaces generated by a set of isovalues in a dataset.
To set up such a visualization, you’ll need to first create as many Render View s as isovalues. Then, create just as
many Contour filters, setting each one up with a right isovalue for the contour to generate and display the result in one
of the views. As the number of isovalues increases, you can see how this can get tedious. It is highly error prone, as
you need to keep track of which view shows which isovalue. Now, imagine after having set up the entire visualization
that you need to change the Representation type for all the of the isosurfaces to Wireframe !

Comparative View s were designed to handle such use-cases. Instead of creating separate views, you create a single
view Render View (Comparative) . The view itself comprises of a configurable 𝑚× 𝑛 Render View s. Any data
that you show in this view gets shown in all the internal views simultaneously. Any display property changes, such as
scalar coloring and representation type are also maintained consistently between these internal views. The interactions
in the internal views are linked, so when you interact with one, all other views update as well. While this is all nice
and well, the real power of Comparative View s becomes apparent when you set up a parameter to vary across the
views. This parameter can be any of the properties on the pipeline modules such as filter properties and opacity, or it
could be the data time. Each of these internal views will now render the result obtained by setting the parameter as
per your selection. Going back to our original example, we will create a single Contour filter that we show in Render
View (Comparative) with as many internal views as the isovalue to compare. Next, we will set up a parameter study
for varying the Isosurfaces property on the Contour filter, and, viola! The view will generate the comparative
visualization for us!

In this chapter, we look at how to configure this view and how to set these parameters to compare. We limit our
discussion to Render View (Comparative) . However, the same principles are applicable to other comparative
views, including Bar Chart View (Comparative) and Line Chart View (Comparative) .

Fig. 2.14: Render View (Comparative) in paraview showing a parameter study. In this case, we are comparing
the visualization generated using different isovalues for the Contour filter. The Comparative View Inspector
dockpanel (on the right) is used to configure the parameter study.

170 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.3.1 Setting up a comparative view

To create Render View (Comparative) in paraview, split or close the active view and select Render View
(Comparative) from the new view creation widget. paraview will immediately show four Render View s laid
out in a 2×2 grid. While you cannot resize these internal views, notice that you can still split the view frame and create
other views if needed.

The Properties panel will show properties similar to those available on the Render View under the View properties
section. If you change any of these properties, they will affect all these internal views, e.g., setting the Background
color to Gradient will make all the views show a gradient background.

Fig. 2.15: Comparative View Inspector in paraview used to configure the active comparative view.

To configure the comparative view itself, you must to use the Comparative View Inspector (Fig. 2.15) accessible
from the View menu. The Comparative View Inspector is a dockable panel that is enabled when the active view
is a comparative view.

To change how many internal views are used in the active comparative view and how they are laid out, use the Layout
. The first value is the number of views in the horizontal direction and the second is the count in the vertical direction.

Besides doing a parameter study in side-by-side views, you can also show all the results in a single view. For that,
simply check the Overlay all comparisons checkbox. When checked, instead of getting a grid of 𝑚 × 𝑛 views,
you will only see one view with all visible data displayed 𝑚× 𝑛 times.

To show data in this view is the same as any other view: Make this view active and use the Pipeline Browser to
toggle the eyeball icons to show data produced by the selected pipeline module(s). Showing any dataset in this view will
result in the data being shown in all the internal views simultaneously. As is true with View properties, with Display
properties, changing Coloring , Styling , or any other properties will reflect in all internal views.

2.3. Comparative visualization 171

ParaView Users Guide Documentation, Release 5.8.1

Since the cameras among the internal views are automatically linked, if you interact with one of the views, all views
will also update simultaneously when you release the mouse button.

2.3.2 Setting up a parameter study

Fig. 2.16: Render View (Comparative) with Annotate Time filter showing the time for each of the views. In this
case, the parameter study is varying Time across the views.

To understand how to setup a parameter study, let’s go back to our original example. Our visualization pipeline is
simply Wavelet → Contour (assuming default property values), and we are showing the result from the Contour
filter in the 2× 2 Render View (Comparative) with Overlay all comparisons unchecked.

Now, we want to vary the Isosurfaces property value for the visualization in each of the internal views. That’s our
parameter to study. Since that’s a property on the Contour filter, we select the Contour filter instance. Then, its
property Isosurfaces is in the parameter selection combo-boxes. To add the parameter to the study, you must hit the

button.

The parameter Contour1:Isosurfaces will then show up in the Parameter list above the combo-boxes. You can

delete this parameter by using the button next to the parameter name.

Did you know?

Notice how this mechanism for setting up a parameter study is similar to how animations are set up. In fact, under the
cover, the two mechanisms are not that different, and they share a lot of implementation code.

Simultaneously, the table widget below the combo-boxes is populated with a default set of values for the Isosurfaces
. This is where you specify the parameter values for each of the views. The location of the views matches the location
in the table. Hence, 0−𝐴 is the top-left view, 0−𝐵 is the second view from the left in the topmost row, and so on. The
parameter value at a specific location in the table is the value used to generate the visualization in the corresponding
view.

172 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

To change the parameter (in our case Isosurfaces) value, you can double click on the cell in the table and change it
one at a time. Also, to make it easier to fill the cells with a range of values, you can click and drag over multiple cells.
When you release the mouse, a dialog will prompt you to enter the data value range (Fig. 2.17). In case you selected
a combination of rows and columns, the dialog will also let you select in which direction the parameter is varied using
the range specified. You can choose to vary the parameter horizontally first, vertically first, or only along one of the
directions while keeping the other constant. This is useful when doing a study with multiple parameters.

Fig. 2.17: Dialog used to select a range of parameter values and control how to vary them in paraview.

As soon as you change the parameter values, the view will update to reflect the change.

2.3.3 Adding annotations

You add annotations like color legends, text, and cube-axes exactly as you would with a regular Render View . As
with other properties, annotations will show up in all of the internal views.

Did you know?

You can use the Annotate Time source or filter to show the data time or the view time in each of the internal views.
If Time is one of the parameters in your study, the text will reflect the time values for each of the individual views, as
expected (Fig. 2.16)!

2.4 Programmable Filter

A pipeline module in ParaView does one of two things: it either generates data or processes input data. To generate
data, the module may use a mathematical model e.g. Sources > Sphere or read a file from disk. Processing data entails
transforming input data by applying defined operations to generate a new output. ParaView provides a large set of
readers, data sources and data filters that cover the needs of many users. For the cases where the available collection
does not satisfy your needs, ParaView provides a mechanism to add new modules via plugins. Conventional plugins,
however, are intended for hardcore developers. They are written in C++, using the data processing APIs provided by
ParaView and VTK. The complexity of building and packaging C++ plugins that work on all distributed versions of
ParaView can be daunting and thus a huge barrier for even advanced ParaView users. Python-based programmable
filters and sources provide an easy alternative to this. New modules can be written as Python scripts that are executed by
ParaView to generate and/or process data, just like conventional C++ modules. Since the scripts are standard Python
scripts, you have access to Python packages such as NumPy that provide several numeric operations useful for data
transformation.

2.4. Programmable Filter 173

ParaView Users Guide Documentation, Release 5.8.1

In this chapter, we will explore how to use Python to add new data processing modules to ParaView through examples.
For additional explanation of the data processing API, see Section 2.5.

Common Errors

In this guide so far, we have been looking at examples of Python scripts for pvpython. These scripts are used to script
the actions you would perform using the paraview UI. The scripts you would write for Programmable Source and
Programmable Filter are entirely different. The data processing API executes within the data processing pipeline
and, thus, has access to the data being processed. In client-server mode, this means that such scripts are indeed executed
on the server side, potentially in parallel, across several MPI ranks. Therefore, attempting to import the paraview.
simple Python module in the Programmable Source script, for example, is not supported and will have unexpected
consequences.

2.4.1 Understanding the programmable modules

With programmable modules, you are writing custom code for filters and sources. You are expected to understand the
basics of a VTK (and ParaView) data processing pipeline, including the various stages of the pipeline execution as
well as the data model. Refer to Section 1.3.1 for an overview of the VTK data model. While a detailed discussion of
the VTK pipeline execution model is beyond the scope of this book, the fundamentals covered in this section, along
with the examples in the rest of this chapter, should help you get started and write useful modules. For a primer on the
details of the VTK pipeline execution stages, see [BerkGeveci].

To create the programmable source or filter in paraview, you use the Sources > Programmable Source or Filters
> Programmable Filter menus, respectively. Since the Programmable Filter is a filter, like other filters, it gets
connected to the currently active source(s), i.e., the currently active source(s) become the input to this new filter.
Programmable Source , on the other hand, does not have any inputs.

One of the first things that you specify after creating any of these programmable modules is the Output Data Set
Type . This option lets you select the type of dataset this module will produce. The options provided include several
of the data types discussed in Section 1.3.1. Additionally, for the Programmable Filter , you can select Same as
Input to indicate that the filter preserves the input dataset type.

Next is the primary part: the Script . This is where you enter the Python script to generate or process from the inputs
the dataset that the module will produce. As with any Python script, you can import other Python packages and modules
in this script. Just be aware that when running in client-server mode, this script is going to be executed on the server
side. Accordingly, any modules or packages you import must be available on the server side to avoid errors.

The script gets executed in what’s called the RequestData pass of the pipeline execution. This is the pipeline pass in
which an algorithm is expected to produce the output dataset.

There are several other passes in a pipeline’s execution. The ones for which you can specify a Python script to execute
with these programmable modules are:

• RequestInformation: In this pass, the algorithm is expected to provide the pipeline with any meta-data available
about the data that will be produced by it. This includes things like number of timesteps in the dataset and their
time values for temporal datasets or extents for structured datasets. This gets called before RequestData pass.
In the RequestData pass, the pipeline could potentially qualify the request based on the meta-data provided in
this pass. For example, if an algorithm announces that the temporal dataset has multiple timesteps, the pipeline
could request that the algorithm produce data for one of those timesteps in RequestData .

• RequestUpdateExtent: In this pass, a filter gets the opportunity to qualify requests for execution passed on to
the upstream pipeline. As an example, if an upstream reader announced in its RequestInformation script that
it can produce several timesteps, in RequestUpdateExtent, this filter can make a request to the upstream reader
for a specific timestep. This pass gets called after RequestInformation, but before RequestData . It’s not very
common to provide a script for this pass.

174 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.18: Properties panel for Programmable Filter in paraview.

2.4. Programmable Filter 175

ParaView Users Guide Documentation, Release 5.8.1

You can specify the script for the RequestInformation pass in RequestInformation Script and for the RequestUp-
dateExtent pass in RequestUpdateExtent Script . Since the RequestUpdateExtent pass does not make much sense
for an algorithm that does not have any inputs, RequestUpdateExtent Script is not available on Programmable
Source .

2.4.2 Recipes for Programmable Source

In this section, we look at several recipes for Programmable Source . A common use of Programmable Source is
to prototype readers. If your reader library already provides a Python API, then you can easily import the appropriate
Python package to read your dataset using Programmable Source .

Did you know?

Most of the examples in this chapter use a NumPy-centric API for accessing and creating data arrays. Additionally,
you can use VTK’s Python wrapped API for creating and accessing arrays. Given the omnipresence of NumPy, there
is rarely any need for using VTK’s API directly, however.

Reading a CSV file

For this example, we will read in a CSV file to produce a Table (Section 1.3.1) using Programmable Source . We
will use NumPy to do the parsing of the CSV files and pass the arrays read in directly to the pipeline. Note that the
Output DataSet Type must be set to vtkTable .

Code for 'Script'

We will use NumPy to read the csv file.
Refer to NumPy documentation for genfromtxt() for details on
customizing the CSV file parsing.

import numpy as np
assuming data.csv is a CSV file with the 1st row being the names names for
the columns
data = np.genfromtxt("data.csv", dtype=None, names=True, delimiter=',', autostrip=True)
for name in data.dtype.names:

array = data[name]

You can directly pass a NumPy array to the pipeline.
Since ParaView expects all arrays to be named, you
need to assign it a name in the 'append' call.
output.RowData.append(array, name)

176 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Reading a CSV file series

Building on the example from Section 2.4.2, let’s say we have a series of files that we want to read in as a temporal series.
Recall from Section 2.4.1 that meta-data about data to be produced, including timestep information, is announced in
RequestInformation pass. Hence, for this example, we will need to specify the RequestInformation Script as
well.

As was true earlier, Output DataSet Type must be set to vtkTable . Now, to announce the timesteps, we use the
following as the RequestInformation Script .

Code for 'RequestInformation Script'.
def setOutputTimesteps(algorithm, timesteps):

"helper routine to set timestep information"
executive = algorithm.GetExecutive()
outInfo = executive.GetOutputInformation(0)

outInfo.Remove(executive.TIME_STEPS())
for timestep in timesteps:

outInfo.Append(executive.TIME_STEPS(), timestep)

outInfo.Remove(executive.TIME_RANGE())
outInfo.Append(executive.TIME_RANGE(), timesteps[0])
outInfo.Append(executive.TIME_RANGE(), timesteps[-1])

As an example, let's say we have 4 files in the file series that we
want to say are producing time 0, 10, 20, and 30.
setOutputTimesteps(self, (0, 10, 20, 30))

The Script is similar to earlier, except that we will read a specific CSV file based on which timestep was requested.

Code for 'Script'
def GetUpdateTimestep(algorithm):

"""Returns the requested time value, or None if not present"""
executive = algorithm.GetExecutive()
outInfo = executive.GetOutputInformation(0)
return outInfo.Get(executive.UPDATE_TIME_STEP()) \

if outInfo.Has(executive.UPDATE_TIME_STEP()) else None

This is the requested time-step. This may not be exactly equal to the
timesteps published in RequestInformation(). Your code must handle that
correctly.
req_time = GetUpdateTimestep(self)

Now, use req_time to determine which CSV file to read and read it as before.
Remember req_time need not match the time values put out in
'RequestInformation Script'. Your code need to pick an appropriate file to
read, irrespective.

...
TODO: Generate the data as you want.

Now mark the timestep produced.
output.GetInformation().Set(output.DATA_TIME_STEP(), req_time)

2.4. Programmable Filter 177

ParaView Users Guide Documentation, Release 5.8.1

Reading a CSV file with particles

This is similar to Section 2.4.2. Now, however, let’s say the CSV has three columns named X, Y and Z that we want to
treat as point coordinates and produce a vtkPolyData with points instead of a vtkTable . For that, we first ensure
that Output DataSet Type is set to vtkPolyData . Next, we use the following Script :

Code for 'Script'

from vtk.numpy_interface import algorithms as algs
from vtk.numpy_interface import dataset_adapter as dsa
import numpy as np

assuming data.csv is a CSV file with the 1st row being the names names for
the columns
data = np.genfromtxt("/tmp/points.csv", dtype=None, names=True, delimiter=',',␣
→˓autostrip=True)

convert the 3 arrays into a single 3 component array for
use as the coordinates for the points.
coordinates = algs.make_vector(data["X"], data["Y"], data["Z"])

create a vtkPoints container to store all the
point coordinates.
pts = vtk.vtkPoints()

numpyTovtkDataArray is needed to called directly to convert the NumPy
to a vtkDataArray which vtkPoints::SetData() expects.
pts.SetData(dsa.numpyTovtkDataArray(coordinates, "Points"))

set the pts on the output.
output.SetPoints(pts)

next, we define the cells i.e. the connectivity for this mesh.
here, we are creating merely a point could, so we'll add
that as a single poly vextex cell.
numPts = pts.GetNumberOfPoints()
ptIds is the list of point ids in this cell
(which is all the points)
ptIds = vtk.vtkIdList()
ptIds.SetNumberOfIds(numPts)
for a in xrange(numPts):

ptIds.SetId(a, a)

Allocate space for 1 cell.
output.Allocate(1)
output.InsertNextCell(vtk.VTK_POLY_VERTEX, ptIds)

We can also pass all the array read from the CSV
as point data arrays.
for name in data.dtype.names:

array = data[name]
output.PointData.append(array, name)

The thing to note is that this time, we need to define the geometry and topology for the output dataset. Each data type

178 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

has different requirements on how these are specified. For example, for unstructured datasets like vtkUnstructuredGrid
and vtkPolyData, we need to explicitly specify the geometry and all the connectivity information. For vtkImageData,
the geometry is defined using origin, spacing, and extents, and connectivity is implicit.

Reading binary 2D image

This recipe shows how to read raw binary data representing a 3D volume. Since raw binary files don’t encode infor-
mation about the volume extents and data type, we will assume that the extents and data type are known and fixed.

For producing image volumes, you need to provide the information about the structured extents in RequestInformation.
Ensure that the Output Data Set Type is set to vtkImageData .

Code for 'RequestInformation Script'.
executive = self.GetExecutive()
outInfo = executive.GetOutputInformation(0)
we assume the dimensions are (48, 62, 42).
outInfo.Set(executive.WHOLE_EXTENT(), 0, 47, 0, 61, 0, 41)
outInfo.Set(vtk.vtkDataObject.SPACING(), 1, 1, 1)

The Script to read the data can be written as follows.

Code for 'Script'
import numpy as np

read raw binary data.
ensure 'dtype' is set properly.
data = np.fromfile("HeadMRVolume.raw", dtype=np.uint8)

dims = [48, 62, 42]
assert data.shape[0] == dims[0]*dims[1]*dims[2], "dimension mismatch"

output.SetExtent(0, dims[0]-1, 0, dims[1]-1, 0, dims[2]-1)
output.PointData.append(data, "scalars")
output.PointData.SetActiveScalars("scalars")

Helix source

Here is another polydata source example. This time, we generate the data programmatically.

Code for 'Script'

#This script generates a helix curve.
#This is intended as the script of a 'Programmable Source'
import math
import numpy as np
from vtk.numpy_interface import algorithms as algs
from vtk.numpy_interface import dataset_adapter as dsa

numPts = 80 # Points along Helix
length = 8.0 # Length of Helix
rounds = 3.0 # Number of times around

(continues on next page)

2.4. Programmable Filter 179

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.19: Programmable Source used to read HeadMRVolume.raw file available in the VTK data repository.

(continued from previous page)

Compute the point coordinates for the helix.
index = np.arange(0, numPts, dtype=np.int32)
scalars = index * rounds * 2 * math.pi / numPts
x = index * length / numPts;
y = np.sin(scalars)
z = np.cos(scalars)

Create a (x,y,z) coordinates array and associate that with
points to pass to the output dataset.
coordinates = algs.make_vector(x, y, z)
pts = vtk.vtkPoints()
pts.SetData(dsa.numpyTovtkDataArray(coordinates, 'Points'))
output.SetPoints(pts)

Add scalars to the output point data.
output.PointData.append(index, 'Index')
output.PointData.append(scalars, 'Scalars')

Next, we need to define the topology i.e.
cell information. This helix will be a single
polyline connecting all the points in order.
ptIds = vtk.vtkIdList()
ptIds.SetNumberOfIds(numPts)
for i in xrange(numPts):
#Add the points to the line. The first value indicates
#the order of the point on the line. The second value
#is a reference to a point in a vtkPoints object. Depends
#on the order that Points were added to vtkPoints object.
#Note that this will not be associated with actual points

(continues on next page)

180 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

#until it is added to a vtkPolyData object which holds a
#vtkPoints object.
ptIds.SetId(i, i)

Allocate the number of 'cells' that will be added. We are just
adding one vtkPolyLine 'cell' to the vtkPolyData object.
output.Allocate(1, 1)

Add the poly line 'cell' to the vtkPolyData object.
output.InsertNextCell(vtk.VTK_POLY_LINE, ptIds)

Fig. 2.20: Programmable Source output generated using the script in Section 2.4.2. This visualization uses Tube
filter to make the output polyline more prominent.

2.4.3 Recipes for Programmable Filter

One of the differences between the Programmable Source and the Programmable Filter is that the latter expects
at least 1 input. Of course, the code in the Programmable Filter is free to disregard the input entirely and work
exactly as Programmable Source . Programmable Filter is designed to customize data transformations. For
example, it is useful when you want to compute derived quantities using expressions not directly possible with Python
Calculator and Calculator or when you want to use other Python packages or even VTK filters not exposed in
ParaView for processing the inputs.

In this section, we look at various recipes for Programmable Filter s.

2.4. Programmable Filter 181

ParaView Users Guide Documentation, Release 5.8.1

Adding a new point/cell data array based on an input array

Python Calculator provides an easy mechanism of computing derived variables. You can also use the
Programmable Filter . Typically, for such cases, ensure that the Output DataSet Type is set to Same as Input
.

Code for 'Script'

'inputs' is set to an array with data objects produced by inputs to
this filter.

Get the first input.
input0 = inputs[0]

compute a value.
dataArray = input0.PointData["V"] / 2.0

To access cell data, you can use input0.CellData.

'output' is a variable set to the output dataset.
output.PointData.append(dataArray, "V_half")

The thing to note about this code is that it will work as expected even when the input dataset is a composite dataset such
as a Multiblock dataset (Section 1.3.1). Refer to Section 2.5 for details on how this works. There are cases, however,
when you may want to explicitly iterate over blocks in an input multiblock dataset. For that, you can use the following
snippet.

input0 = inputs[0]
if input0.IsA("vtkCompositeDataSet"):

iterate over all non-empty blocks in the input
composite dataset, including multiblock and AMR datasets.
for block in input0:

processBlock(block)
else:

processBlock(input0)

Computing tetrahedra volume

This recipe computes the volume for each tetrahedral cell in the input dataset. You can always simply use the Python
Calculator to compute cell volume using the expression volume(inputs[0]). This recipe is provided to illustrate
the API.

Ensure that the output type is set to Same as Input , and this filter assumes the input is an unstructured grid (Section
1.3.1).

Code for 'Script'.

import numpy as np

This filter computes the volume of the tetrahedra in an unstructured mesh.
Note, this is just an illustration and not the most efficient way for
computing cell volume. You should use 'Python Calculator' instead.
input0 = inputs[0]

(continues on next page)

182 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

numTets = input0.GetNumberOfCells()

volumeArray = np.empty(numTets, dtype=np.float64)
for i in xrange(numTets):

cell = input0.GetCell(i)
p1 = input0.GetPoint(cell.GetPointId(0))
p2 = input0.GetPoint(cell.GetPointId(1))
p3 = input0.GetPoint(cell.GetPointId(2))
p4 = input0.GetPoint(cell.GetPointId(3))
volumeArray[i] = vtk.vtkTetra.ComputeVolume(p1,p2,p3,p4)

output.CellData.append(volumeArray, "Volume")

Labeling common points between two datasets

In this example, the Programmable Filter takes two input datasets: A and B. It outputs dataset B with a new scalar
array that labels the points in B that are also in A. You should select two datasets in the pipeline browser and then apply
the programmable filter.

Code for 'Script'

Get the two inputs
A = inputs[0]
B = inputs[1]
use len(inputs) to determine now many inputs are connected
to this filter.

We use numpy.in1d to test all which point coordinate components
in B are present in A as well.
maskX = np.in1d(B.Points[:,0], A.Points[:,0])
maskY = np.in1d(B.Points[:,1], A.Points[:,1])
maskZ = np.in1d(B.Points[:,2], A.Points[:,2])

Combining each component mask, we get the mask for point
itself.
mask = maskX & maskY & maskZ

Now convert it to uint8, since bool arrays
cannot be passed back to the VTK pipeline.
mask = np.asarray(mask, dtype=np.uint8)

Initialize the output and add the labels array

This ShallowCopy is needed since by default the output is
initialized to be a shallow copy of the first input (inputs[0]),
but we want it to be a description of the second input.
output.ShallowCopy(B.VTKObject)
output.PointData.append(mask, "labels")

Note in the script above the two inputs are defined in an inputs array. The order of elements in this array is determined
by the order the data sources were selected in the Pipeline Browser . Hence, inputs[0] is the first data source

2.4. Programmable Filter 183

ParaView Users Guide Documentation, Release 5.8.1

selected and inputs[1] is the second.

2.4.4 Python Algorithm

Programmable Source and Programmable Filter are convenient ways to prototype a Python-based data process-
ing module. If you want to distribute such modules, or package them into modules with user interfaces, for example,
then VTKPythonAlgorithmBase -based approach is recommended instead. Here, you write a Python class by sub-
classing VTKPythonAlgorithmBase and implementing methods to do the data processing, just like any other VTK-
based filter or source. Using Python syntactic add-ons called decorators to annotate your class, you can easily expose
the class to ParaView as a filter or a source, and ParaView will automatically add UI widgets to control parameters, etc.

Let’s start with the simple script featured in Fig. 2.18. Here’s the Python script to create a VTKPythonAlgorithmBase
subclass for the same operation.

from vtkmodules.vtkCommonDataModel import vtkDataSet
from vtkmodules.util.vtkAlgorithm import VTKPythonAlgorithmBase
from vtkmodules.numpy_interface import dataset_adapter as dsa

class HalfVFilter(VTKPythonAlgorithmBase):
def __init__(self):

VTKPythonAlgorithmBase.__init__(self)

def RequestData(self, request, inInfo, outInfo):
get the first input.
input0 = dsa.WrapDataObject(vtkDataSet.GetData(inInfo[0]))

compute a value.
data = input0.PointData["V"] / 2.0

add to output
output = dsa.WrapDataObject(vtkDataSet.GetData(outInfo))
output.PointData.append(data, "V_half");
return 1

To expose this filter in ParaView, you have to add decorators to the class definition as follows:

same imports as earlier.
from vtkmodules.vtkCommonDataModel import vtkDataSet
from vtkmodules.util.vtkAlgorithm import VTKPythonAlgorithmBase
from vtkmodules.numpy_interface import dataset_adapter as dsa

new module for ParaView-specific decorators.
from paraview.util.vtkAlgorithm import smproxy, smproperty, smdomain

@smproxy.filter(label="Half-V Filter")
@smproperty.input(name="Input")
class HalfVFilter(VTKPythonAlgorithmBase):

the rest of the code here is unchanged.
def __init__(self):

VTKPythonAlgorithmBase.__init__(self)

def RequestData(self, request, inInfo, outInfo):
get the first input.

(continues on next page)

184 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

input0 = dsa.WrapDataObject(vtkDataSet.GetData(inInfo[0]))

compute a value.
data = input0.PointData["V"] / 2.0

add to output
output = dsa.WrapDataObject(vtkDataSet.GetData(outInfo))
output.PointData.append(data, "V_half");
return 1

To use this new filter, save this to a *.py file, and load it as a plugin using the Plugin Manager from Tools > Plugin
Manager. On success, you will see a Half-V Filter in the Filters menu.

Besides exposing class as filters, or sources, you can use the decorators to add UI widgets to call methods on the class
to set parameters.

The follow examples adds a new source named Python-based Superquadric Source Example , with UI to control
various parameters.

to add a source, instead of a filter, use the `smproxy.source` decorator.
@smproxy.source(label="Python-based Superquadric Source Example")
class PythonSuperquadricSource(VTKPythonAlgorithmBase):

"""This is dummy VTKPythonAlgorithmBase subclass that
simply puts out a Superquadric poly data using a vtkSuperquadricSource
internally"""
def __init__(self):

VTKPythonAlgorithmBase.__init__(self,
nInputPorts=0,
nOutputPorts=1,
outputType='vtkPolyData')

from vtkmodules.vtkFiltersSources import vtkSuperquadricSource
self._realAlgorithm = vtkSuperquadricSource()

def RequestData(self, request, inInfo, outInfo):
from vtkmodules.vtkCommonDataModel import vtkPolyData
self._realAlgorithm.Update()
output = vtkPolyData.GetData(outInfo, 0)
output.ShallowCopy(self._realAlgorithm.GetOutput())
return 1

for anything too complex or not yet supported, you can explicitly
provide the XML for the method.
@smproperty.xml("""

<DoubleVectorProperty name="Center"
number_of_elements="3"
default_values="0 0 0"
command="SetCenter">
<DoubleRangeDomain name="range" />
<Documentation>Set center of the superquadric</Documentation>

</DoubleVectorProperty>""")
def SetCenter(self, x, y, z):

self._realAlgorithm.SetCenter(x,y,z)
self.Modified()

(continues on next page)

2.4. Programmable Filter 185

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

In most cases, one can simply use available decorators.
@smproperty.doublevector(name="Scale", default_values=[1, 1, 1])
@smdomain.doublerange()
def SetScale(self, x, y, z):

self._realAlgorithm.SetScale(x,y,z)
self.Modified()

@smproperty.intvector(name="ThetaResolution", default_values=16)
def SetThetaResolution(self, x):

self._realAlgorithm.SetThetaResolution(x)
self.Modified()

@smproperty.intvector(name="PhiResolution", default_values=16)
@smdomain.intrange(min=0, max=1000)
def SetPhiResolution(self, x):

self._realAlgorithm.SetPhiResolution(x)
self.Modified()

@smproperty.doublevector(name="Thickness", default_values=0.3333)
@smdomain.doublerange(min=1e-24, max=1.0)
def SetThickness(self, x):

self._realAlgorithm.SetThickness(x)
self.Modified()

On loading this script as a plugin and creating the Python-based Superquadric Source Example source, the
Properties panel will be populated as shown in Fig. 2.21.

The decorators also enable us to add new readers and writers. Here is an example writer that uses NumPy to write
tables as compressed binary arrays.

`smproxy.writer` decorator register the module as writer for the provided file
extension.
@smproxy.writer(extensions="npz", file_description="NumPy Compressed Arrays", support_
→˓reload=False)
@smproperty.input(name="Input", port_index=0)
this domain lets ParaView know which types of data this writer can write.
@smdomain.datatype(dataTypes=["vtkTable"], composite_data_supported=False)
class NumpyWriter(VTKPythonAlgorithmBase):

def __init__(self):
VTKPythonAlgorithmBase.__init__(self, nInputPorts=1, nOutputPorts=0, inputType=

→˓'vtkTable')
self._filename = None

@smproperty.stringvector(name="FileName", panel_visibility="never")
@smdomain.filelist()
def SetFileName(self, fname):

"""Specify filename for the file to write."""
if self._filename != fname:

self._filename = fname
self.Modified()

def RequestData(self, request, inInfoVec, outInfoVec):
(continues on next page)

186 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.21: Properties panel automatically generated from a decorated Python class, PythonSuperquadricSource
.

2.4. Programmable Filter 187

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

from vtkmodules.vtkCommonDataModel import vtkTable
from vtkmodules.numpy_interface import dataset_adapter as dsa

table = dsa.WrapDataObject(vtkTable.GetData(inInfoVec[0], 0))
kwargs = {}
for aname in table.RowData.keys():

kwargs[aname] = table.RowData[aname]

import numpy
numpy.savez_compressed(self._filename, **kwargs)
return 1

def Write(self):
self.Modified()
self.Update()

2.5 Using NumPy for processing data

In Section 2.4, we looked at several recipes for writing Python script for data processing that relied heavily on using
NumPy for accessing arrays and performing operations on them. In this chapter, we take a closer look at the VTK-
NumPy integration layer that makes it possible to use VTK and NumPy together, despite significant differences in the
data representations between the two systems.

2.5.1 Teaser

Let’s start with a teaser by creating a simple pipeline with Sphere connected to an Elevation filter, followed by the
Programmable Filter . Let’s see how we would access the input data object in the Script for the Programmable
Filter .

from paraview.vtk.numpy_interface import dataset_adapter as dsa
from paraview.vtk.numpy_interface import algorithms as algs

data = inputs[0]
print(data.PointData.keys())
print(data.PointData['Elevation'])

This example prints out the following in the output window.

['Normals', 'Elevation']
[0.67235619 0.32764378 0.72819519 0.7388373 0.70217478 0.62546903
0.52391261 0.41762003 0.75839448 0.79325461 0.77003199 0.69332629
0.57832992 0.44781935 0.72819519 0.7388373 0.70217478 0.62546903
0.52391261 0.41762003 0.65528756 0.60746235 0.53835285 0.46164712
0.39253765 0.34471244 0.58238 0.47608739 0.37453097 0.29782525
0.2611627 0.27180481 0.55218065 0.42167011 0.30667371 0.22996798
0.20674542 0.24160551 0.58238 0.47608739 0.37453097 0.29782525
0.2611627 0.27180481 0.65528756 0.60746235 0.53835285 0.46164712
0.39253765 0.34471244]

188 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

The importance lies in the last three lines. In particular, note how we used a different API to access the PointData
and the Elevation array in the last two lines. Also note that, when we printed the Elevation array, the output didn’t
look like one from a vtkDataArray. In fact:

elevation = data.PointData['Elevation']
print(type(elevation))

import numpy
print(isinstance(elevation, numpy.ndarray))

This will produce the following:

<class 'paraview.vtk.numpy_interface.dataset_adapter.VTKArray'>
True

So, a VTK array is a NumPy array? What kind of trickery is this, you say? What kind of magic makes the following
possible?

data.PointData.append(elevation + 1, 'e plus one')
print(algs.max(elevation))
print(algs.max(data.PointData['e plus one']))
print(data.VTKObject)

The output here is:

0.7932546138763428
1.7932546138763428
vtkPolyData (0x7fa20d011c60)
...
Point Data:
...
Number Of Arrays: 3
Array 0 name = Normals
Array 1 name = Elevation
Array 2 name = e plus one

It is all in the numpy_interface module. It ties VTK datasets and data arrays to NumPy arrays and introduces a
number of algorithms that can work on these objects. There is quite a bit to this module, and we will introduce it piece
by piece in the rest of this chapter.

Let’s wrap up this section with one final teaser.

print(algs.gradient(data.PointData['Elevation']))

Output:

[[0.32640398 0.32640398 0.01982867]
[0.32640402 0.32640402 0.01982871]
...
[0.41252578 0.20134845 0.2212007]
[0.41105482 0.21514832 0.0782456]]

Please note that this example is not very easily replicated by using pure NumPy. The gradient function returns the
gradient of an unstructured grid – a concept that does not exist in NumPy. However, the ease-of-use of NumPy is there.

2.5. Using NumPy for processing data 189

ParaView Users Guide Documentation, Release 5.8.1

2.5.2 Understanding the dataset_adapter module

In this section, let’s take a closer look at the dataset_adapter module. This module was designed to simplify
accessing VTK datasets and arrays from Python and to provide a NumPy-style interface.

Let’s continue with the example from the previous section. Remember, this script is being put in the Programmable
Filter ‘s Script , connected to the Sphere , followed by the Elevation filter pipeline.

from vtk.numpy_interface import dataset_adapter as dsa
...
print(data)
print(isinstance(data, dsa.VTKObjectWrapper))

This will print:

<paraview.vtk.numpy_interface.dataset_adapter.PolyData object at 0x14b7caa50>
True

We can access the underlying VTK object using the VTKObject member:

print(type(data.VTKObject))

which produces:

<type 'vtkCommonDataModelPython.vtkPolyData'>

What we get as the $inputs$ in the Programmable Filter is actually a Python object that wraps the VTK data
object itself. The Programmable Filter does this by manually calling the WrapDataObject function from the vtk.
numpy_interface.dataset_adaptermodule on the VTK data object. Note that the WrapDataObject function will
return an appropriate wrapper class for all vtkDataSet subclasses, vtkTable, and all vtkCompositeData subclasses.
Other vtkDataObject subclasses are not currently supported.

VTKObjectWrapper forwards VTK methods to its VTKObject so the VTK API can be accessed directy as follows:

print(data.GetNumberOfCells())
96L

However, VTKObjectWrapper s cannot be directly passed to VTK methods as an argument.

from paraview.vtk.vtkFiltersGeneral import vtkShrinkPolyData
s = vtkShrinkPolyData()
s.SetInputData(data)

This attempt to set the data results in an error message.

TypeError: SetInputData argument 1: method requires a VTK object

Instead, we must pass the VTK object to the VTK filter, like so:

s.SetInputData(data.VTKObject)

An important thing to note in the example above is how the Python class vtkShrinkPolyData was imported for
use in the script. In VTK, classes are organized into different groups of related functionality, and these groups
can be invididually imported as Python modules. To use a class, you first identify the module in which it resides,
which can be determined from the Doxygen documentation of the class [KitwareInc]. Go to the Doxygen page for
the class, find the path of the file from which the documentation was generated at the bottom of the page, which
has the form dox/<first directory>/<second directory>/<class name>. The module is then derived as

190 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

vtk<first directory><second directory>. As an example, the documentation for vtkShrinkPolyData is
generated from dox/Filters/General/vtkShrinkPolyData, hence its module is vtkFiltersGeneral. Then,
you can import the class with a statement of the form.

Dataset attributes

So far, we have a wrapper for VTK data objects that partially behaves like a VTK data object. This gets a little bit more
interesting when we start looking at how to access the fields (arrays) contained within this dataset.

For simplicity, we will embed the output generated by the script in the code itself and use the >>> prefix to differentiate
the code from the output.

>>> print(data.PointData)
<vtk.numpy_interface.dataset_adapter.DataSetAttributes at 0x110f5b750>

>>> print(data.PointData.keys())
['Normals', 'Elevation']

>>> print(data.CellData.keys())
[]

>>> print(data.PointData['Elevation'])
VTKArray([0.5 , 0. , 0.45048442, 0.3117449 , 0.11126047,

0. , 0. , 0. , 0.45048442, 0.3117449 ,
0.11126047, 0. , 0. , 0. , 0.45048442,
...,
0.11126047, 0. , 0. , 0. , 0.45048442,
0.3117449 , 0.11126047, 0. , 0. , 0.], dtype=float32)

>>> elevation = data.PointData['Elevation']

>>> print(elevation[:5])
VTKArray([0.5, 0., 0.45048442, 0.3117449, 0.11126047], dtype=float32)
Note that this works with composite datasets as well:

>>> mb = vtk.vtkMultiBlockDataSet()
>>> mb.SetNumberOfBlocks(2)
>>> mb.SetBlock(0, data.VTKObject)
>>> mb.SetBlock(1, data.VTKObject)
>>> mbw = dsa.WrapDataObject(mb)
>>> print(mbw.PointData)
<vtk.numpy_interface.dataset_adapter.CompositeDataSetAttributes instance at 0x11109f758>

>>> print(mbw.PointData.keys())
['Normals', 'Elevation']

>>> print(mbw.PointData['Elevation'])
<vtk.numpy_interface.dataset_adapter.VTKCompositeDataArray at 0x1110a32d0>

It is possible to access PointData , CellData , FieldData , Points (subclasses of vtkPointSet only), and
Polygons (vtkPolyData only) this way. We will continue to add accessors to more types of arrays through this
API.

2.5. Using NumPy for processing data 191

ParaView Users Guide Documentation, Release 5.8.1

2.5.3 Working with arrays

For this section, let’s change our test pipeline to consist of the Wavelet source connected to the Programmable
Filter .

In the Script , we access the RTData point data array as follows:

Code for 'Script'
from paraview.vtk.vtkFiltersGeneral import vtkDataSetTriangleFilter
image = inputs[0]
rtdata = image.PointData['RTData']

Let's transform this data as well, using another VTK filter.
tets = vtkDataSetTriangleFilter()
tets.SetInputDataObject(image.VTKObject)
tets.Update()

Here, now we need to explicitly wrap the output dataset to get a
VTKObjectWrapper instance.
ugrid = dsa.WrapDataObject(tets.GetOutput())
rtdata2 = ugrid.PointData['RTData']

Here, we created two datasets: an image data (vtkImageData) and an unstructured grid (vtkUnstructuredGrid).
They essentially represent the same data but the unstructured grid is created by tetrahedralizing the image data. So, we
expect the unstructured grid to have the same points but more cells (tetrahedra).

from paraview.vtk.vtkFiltersGeneral import vtkDataSetTriangleFilter

The array API

numpy_interface array objects behave very similar to NumPy arrays. In fact, arrays from vtkDataSet subclasses are
instances of VTKArray, which is a subclass of numpy.ndarray . Arrays from vtkCompositeDataSet and subclasses
are not NumPy arrays, but they behave very similarly. We will outline the differences in a separate section. Let’s start
with the basics. All of the following work as expected.

As before, for simplicity, we will embed the output generated by the script in the code itself and use the >>> prefix to
differentiate the code from the output.

>>> print(rtdata[0])
60.763466

>>> print(rtdata[-1])
57.113735

>>> print(repr(rtdata[0:10:3]))
VTKArray([60.76346588, 95.53707886, 94.97672272, 108.49817657], dtype=float32)

>>> print(repr(rtdata + 1))
VTKArray([61.76346588, 86.87795258, 73.80931091, ..., 68.51051331,

44.34006882, 58.1137352], dtype=float32)

>>> print(repr(rtdata < 70))
VTKArray([True , False, False, ..., True, True, True])

(continues on next page)

192 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

We will cover algorithms later. This is to generate a vector field.
>>> avector = algs.gradient(rtdata)

To demonstrate that avector is really a vector
>>> print(algs.shape(rtdata))
(9261,)

>>> print(algs.shape(avector))
(9261, 3)

>>> print(repr(avector[:, 0]))
VTKArray([25.69367027, 6.59600449, 5.38400745, ..., -6.58120966,

-5.77147198, 13.19447994])

A few things to note in this example:

• Single component arrays always have the following shape: (n-tuples,) and not (n-tuples, 1)

• Multiple component arrays have the following shape: (n-tuples, n-components)

• Tensor arrays have the following shape: (n-tuples, 3, 3)

• The above holds even for images and other structured data. All arrays have one dimension (1 component arrays),
two dimensions (multi-component arrays), or three dimensions (tensor arrays).

One more cool thing: It is possible to use boolean arrays to index arrays. Thus, the following works very nicely:

>>> print(repr(rtdata[rtdata < 70]))
VTKArray([60.76346588, 66.75043488, 69.19681549, 50.62128448,

64.8801651 , 57.72655106, 49.75050354, 65.05570221,
57.38450241, 69.51113129, 64.24596405, 67.54656982,
...,
61.18143463, 66.61872864, 55.39360428, 67.51051331,
43.34006882, 57.1137352], dtype=float32)

>>> print(repr(avector[avector[:,0] > 10]))
VTKArray([[25.69367027, 9.01253319, 7.51076698],

[13.1944809 , 9.01253128, 7.51076508],
[25.98717642, -4.49800825, 7.80427408],
...,
[12.9009738 , -16.86548471, -7.80427504],
[25.69366837, -3.48665428, -7.51076889],
[13.19447994, -3.48665524, -7.51076794]])

Algorithms

You can do a lot simply using the array API. However, things get much more interesting when we start using the
numpy_interface.algorithms module. We introduced it briefly in the previous examples. We will expand on it a
bit more here. For a full list of algorithms, use help(algs) . Here are some self-explanatory examples:

>>> import paraview.vtk.numpy_interface.algorithms as algs
>>> print(repr(algs.sin(rtdata)))
VTKArray([-0.87873501, -0.86987603, -0.52497 , ..., -0.99943125,

-0.59898132, 0.53547275], dtype=float32)
(continues on next page)

2.5. Using NumPy for processing data 193

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

>>> print(repr(algs.min(rtdata)))
VTKArray(37.35310363769531)

>>> print(repr(algs.max(avector)))
VTKArray(34.781060218811035)

>>> print(repr(algs.max(avector, axis=0)))
VTKArray([34.78106022, 29.01940918, 18.34743023])

>>> print(repr(algs.max(avector, axis=1)))
VTKArray([25.69367027, 9.30603981, 9.88350773, ..., -4.35762835,

-3.78016186, 13.19447994])

If you haven’t used the axis argument before, it is pretty easy. When you don’t pass an axis value, the function is applied
to all values of an array without any consideration for dimensionality. When axis=0 , the function will be applied to
each component of the array independently. When axis=1 , the function will be applied to each tuple independently.
Experiment if this is not clear to you. Functions that work this way include sum , min , max , std , and var .

Another interesting and useful function is where the indices of an array are returned where a particular condition occurs.

>>> print(repr(algs.where(rtdata < 40)))
(array([420, 9240]),)
For vectors, this will also return the component index if an axis is not
defined.

>>> print(repr(algs.where(avector < -29.7)))
(VTKArray([4357, 4797, 4798, 4799, 5239]), VTKArray([1, 1, 1, 1, 1]))

So far, all of the functions that we discussed are directly provided by NumPy. Many of the NumPy ufuncs are included
in the algorithms module. They all work with single arrays and composite data arrays. Algorithms also provide some
functions that behave somewhat differently than their NumPy counterparts. These include cross, dot, inverse, determi-
nant, eigenvalue, eigenvector, etc. All of these functions are applied to each tuple rather than to a whole array/matrix.
For example:

>>> amatrix = algs.gradient(avector)
>>> print(repr(algs.determinant(amatrix)))
VTKArray([-1221.2732624 , -648.48272183, -3.55133937, ..., 28.2577152 ,

-629.28507693, -1205.81370163])

Note that everything above only leveraged per-tuple information and did not rely on the mesh. One of VTK’s biggest
strengths is that its data model supports a large variety of meshes, while its algorithms work generically on all of these
mesh types. The algorithms module exposes some of this functionality. Other functions can be easily implemented by
leveraging existing VTK filters. We used gradient before to generate a vector and a matrix. Here it is again:

>>> avector = algs.gradient(rtdata)
>>> amatrix = algs.gradient(avector)

Functions like this require access to the dataset containing the array and the associated mesh. This is one of the reasons
why we use a subclass of ndarray in dataset_adapter:

>>> print(repr(rtdata.DataSet))
<paraview.vtk.numpy_interface.dataset_adapter.DataSet at 0x11b61e9d0>

194 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Each array points to the dataset containing it. Functions such as gradient use the mesh and the array together. NumPy
provides a gradient function too, you say. What is so exciting about yours? Well, this:

>>> print(repr(algs.gradient(rtdata2)))
VTKArray([[25.46767712, 8.78654003, 7.28477383],

[6.02292252, 8.99845123, 7.49668884],
[5.23528767, 9.80230141, 8.3005352],
...,
[-6.43249083, -4.27642155, -8.30053616],
[-5.19838905, -3.47257614, -7.49668884],
[13.42047501, -3.26066017, -7.28477287]])

>>> print(rtdata2.DataSet.GetClassName())
vtkUnstructuredGrid

Gradient and algorithms that require access to a mesh work whether that mesh is a uniform grid, a curvilinear grid, or
an unstructured grid thanks to VTK’s data model. Take a look at various functions in the algorithms module to see all
the cool things that can be accomplished using it. In the remaining sections, we demonstrate how specific problems
can be solved using these modules.

2.5.4 Handling composite datasets

In this section, we take a closer look at composite datasets. For this example, our pipeline is Sphere source, and Cone
source is set as two inputs to the Programmable Filter .

We can create a multiblock dataset in the Programmable Filter ‘s Script as follows:

Let's assume inputs[0] is the output from Sphere and
inputs[1] is the output from Cone.
mb = vtk.vtkMultiBlockDataSet()
mb.SetBlock(0, inputs[0].VTKObject)
mb.SetBlock(1, inputs[1].VTKObject)

Many of VTK’s algorithms work with composite datasets without any change. For example:

e = vtk.vtkElevationFilter()
e.SetInputData(mb)
e.Update()

mbe = e.GetOutputDataObject(0)
print(mbe.GetClassName())

This will output vtkMultiBlockDataSet.

Now that we have a composite dataset with a scalar, we can use numpy_interface . As before, for simplicity, we will
embed the output generated by the script in the code itself and use the >>> prefix to differentiate the code from the
output.

>>> from paraview.vtk.numpy_interface import dataset_adapter as dsa
>>> mbw = dsa.WrapDataObject(mbe)
>>> print(repr(mbw.PointData.keys()))
['Normals', 'Elevation']
>>> elev = mbw.PointData['Elevation']
>>> print(repr(elev))
<paraview.vtk.numpy_interface.dataset_adapter.VTKCompositeDataArray at 0x1189ee410>

2.5. Using NumPy for processing data 195

ParaView Users Guide Documentation, Release 5.8.1

Note that the array type is different than we have previously seen (VTKArray). However, it still works the same way.

>>> from paraview.vtk.numpy_interface import algorithms as algs
>>> print(algs.max(elev))
0.5
>>> print(algs.max(elev + 1))
1.5

You can individually access the arrays of each block as follows.

>>> print(repr(elev.Arrays[0]))
VTKArray([0.5 , 0. , 0.45048442, 0.3117449 , 0.11126047,

0. , 0. , 0. , 0.45048442, 0.3117449 ,
0.11126047, 0. , 0. , 0. , 0.45048442,
0.3117449 , 0.11126047, 0. , 0. , 0. ,
0.45048442, 0.3117449 , 0.11126047, 0. , 0. ,
0. , 0.45048442, 0.3117449 , 0.11126047, 0. ,
0. , 0. , 0.45048442, 0.3117449 , 0.11126047,
0. , 0. , 0. , 0.45048442, 0.3117449 ,
0.11126047, 0. , 0. , 0. , 0.45048442,
0.3117449 , 0.11126047, 0. , 0. , 0.], dtype=float32)

Note that indexing is slightly different.

>>> print(elev[0:3])
[VTKArray([0.5, 0., 0.45048442], dtype=float32),
VTKArray([0., 0., 0.43301269], dtype=float32)]

The return value is a composite array consisting of two VTKArrays. The [] operator simply returned the first four
values of each array. In general, all indexing operations apply to each VTKArray in the composite array collection. It
is similar for algorithms, where:

>>> print(algs.where(elev < 0.5))
[(array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),),
(array([0, 1, 2, 3, 4, 5, 6]),)]

Now, let’s look at the other array called Normals.

>>> normals = mbw.PointData['Normals']
>>> print(repr(normals.Arrays[0]))
VTKArray([[0.00000000e+00, 0.00000000e+00, 1.00000000e+00],

[0.00000000e+00, 0.00000000e+00, -1.00000000e+00],
[4.33883727e-01, 0.00000000e+00, 9.00968850e-01],
[7.81831503e-01, 0.00000000e+00, 6.23489797e-01],
[9.74927902e-01, 0.00000000e+00, 2.22520933e-01],
...
[6.89378142e-01, -6.89378142e-01, 2.22520933e-01],
[6.89378142e-01, -6.89378142e-01, -2.22520933e-01],
[5.52838326e-01, -5.52838326e-01, -6.23489797e-01],
[3.06802124e-01, -3.06802124e-01, -9.00968850e-01]], dtype=float32)

>>> print(repr(normals.Arrays[1]))
<paraview.vtk.numpy_interface.dataset_adapter.VTKNoneArray at 0x1189e7790>

196 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Notice how the second array is a VTKNoneArray . This is because vtkConeSource does not produce normals. Where
an array does not exist, we use a VTKNoneArray as placeholder. This allows us to maintain a one-to-one mapping
between datasets of a composite dataset and the arrays in the VTKCompositeDataArray. It also allows us to keep
algorithms working in parallel without a lot of specialized code.

Where many of the algorithms apply independently to each array in a collection, some algorithms are global. Take min
and max , for example, as we demonstrated above. It is sometimes useful to get per-block answers. For this, you can
use _per_block algorithms.

>>> print(algs.max_per_block(elev))
[0.5, 0.4330127]

These work very nicely together with other operations. For example, here is how we can normalize the elevation values
in each block.

>>> _min = algs.min_per_block(elev)
>>> _max = algs.max_per_block(elev)
>>> _norm = (elev - _min) / (_max - _min)
>>> print(algs.min(_norm))
0.0
>>> print(algs.max(_norm))
1.0

Once you grasp these features, you should be able to use composite arrays very similarly to single arrays.

A final note on composite datasets: The composite data wrapper provided by numpy_interface.dataset_adapter
offers a few convenience functions to traverse composite datasets. Here is a simple example:

>>> for ds in mbw:
>>> print(type(ds))
<class 'paraview.vtk.numpy_interface.dataset_adapter.PolyData'>
<class 'paraview.vtk.numpy_interface.dataset_adapter.PolyData'>

2.6 Remote and parallel visualization

One of the goals of the ParaView application is enabling data analysis and visualization for large datasets. ParaView
was born out of the need for visualizating simulation results from simulations run on supercomputing resources that
are often too big for a single desktop machine to handle. To enable interactive visualization of such datasets, ParaView
uses remote and/or parallel data processing. The basic concept is that if a dataset cannot fit on a desktop machine due
to memory or other limitations, we can split the dataset among a cluster of machines, driven from your desktop. In this
chapter, we will look at the basics of remote and parallel data processing using ParaView. For information on setting
up clusters, please refer to the ParaView Wiki [ThePCommunity].

Did you know?

Remote and parallel processing are often used together, but they refer to different concepts, and it is possible to have
one without the other.

In the case of ParaView, remote processing refers to the concept of having a client, typically paraview or pvpython,
connecting to a pvserver, which could be running on a different, remote machine. All the data processing and,
potentially, the rendering can happen on the pvserver. The client drives the visualization process by building the
visualization pipeline and viewing the generated results.

2.6. Remote and parallel visualization 197

ParaView Users Guide Documentation, Release 5.8.1

Parallel processing refers to a concept where instead of single core — which we call a rank — processing the entire
dataset, we split the dataset among multiple ranks. Typically, an instance of pvserver runs in parallel on more than
one rank. If a client is connected to a server that runs in parallel, we are using both remote and parallel processing.

In the case of pvbatch, we have an application that operates in parallel but without a client connection. This is a case
of parallel processing without remote processing.

2.6.1 Understanding remote processing

Let’s consider a simple use-case. Let’s say you have two computers, one located at your office and another in your
home. The one at the office is a nicer, beefier machine with larger memory and computing capabilities than the one
at home. That being the case, you often run your simulations on the office machine, storing the resulting files on the
disk attached to your office machine. When you’re at work, to visualize those results, you simply launch paraview
and open the data file(s). Now, what if you need to do the visualization and data analysis from home? You have several
options:

• You can copy the data files over to your home machine and then use paraview to visualize them. This is tedious,
however, as you not only have to constantly keep copying/updating your files manually, but your machine has
poorer performance due to the decreased compute capabilities and memory available on it!

• You can use a desktop sharing system like Remote Desktop or VNC, but those can be flaky depending on your
network connection.

Alternatively, you can use ParaView’s remote processing capabilities. The concept is fairly simple. You have two
separate processes: pvserver (which runs on your work machine) and a paraview client (which runs on your home
machine). They communicate with each other over sockets (over an SHH tunnel, if needed). As far as using paraview
in this mode, it’s no different than how we have been using it so far – you create pipelines and then look at the data
produced by those pipelines in views and so on. The pipelines themselves, however, are created remotely on the
pvserver process. Thus, the pipelines have access to the disks on your work machine. The Open File dialog will
in fact browse the file system on your work machine, i.e., the machine on which pvserver is running. Any filters that
you create in your visualization pipeline execute on the pvserver.

While all the data processing happens on the pvserver, when it comes to rendering, paraview can be configured to
either do the rendering on the server process and deliver only images to the client (remote rendering) or to deliver the
geometries to be rendered to the client and let it do the rendering locally (local rendering). When remote rendering,
you’ll be using the graphics capabilities on your work machine (the machine running the pvserver). Every time
a new rendering needs to be obtained (for example, when pipeline parameters are changed or you interact with the
camera, etc.), the pvserver process will re-render a new image and deliver that to the client. When local rendering,
the geometries to be rendered are delivered to the client and the client renders those locally. Thus, not all interactions
require server-side processing. Only when the visualization pipeline is updated does the server need to deliver updated
geometries to the client.

2.6.2 Remote visualization in paraview

Starting a remote server

To begin using ParaView for remote data processing and visualization, we must first start the server application
pvserver on the remote system. To do this, connect to your remote system using a shell and run:

> pvserver

You will see this startup message on the terminal:

198 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Waiting for client...
Connection URL: cs://myhost:11111
Accepting connection(s): myhost:11111

This means that the server has started and is listening for a connection from a client.

Configuring a server connection

To connect to this server with the paraview client, select File > Connect or click the icon in the toolbar to bring
up the Choose Server Configuration dialog.

Fig. 2.22: The Choose Server Configuration dialog is used to connect to a server.

Common Errors

If your server is behind a firewall and you are attempting to connect to it from outside the firewall, the connection may
not be established successfully. You may also try reverse connections (Section 2.6.4) as a workaround for firewalls.
Please consult your network manager if you have network connection problems.

Figure Fig. 2.22 shows the Choose Server Configuration dialog with a number of entries for remote servers. In
the figure, a number of servers have already been configured, but when you first open this dialog, this list will be empty.
Before you can connect to a remote server, you will need to add an entry to the list by clicking on the Add Server
button. When you do, you will see the Edit Server Configuration dialog as in Figure Fig. 2.23.

You will need to set a name for the connection, the server type, the DNS name of the host on which you just started the
server, and the port. The default Server Type is set to Client / Server, which means that the server will be listening
for an incoming connection from the client. There are several other options for this setting that we will discuss later.

When you are done, click the Configure button. Another dialog, as shown in Fig. 2.24, will appear where you specify
how to start the server. Since we started the server manually, we will leave the Startup Type on the default Manual
setting. You can optionally set the Startup Type to Command and specify an external shell command to launch a
server process.

2.6. Remote and parallel visualization 199

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.23: The Edit Server Configuration dialog is used to configure settings for connecting to remote servers.

Fig. 2.24: Configure the server manually. It must be started outside of ParaView.

200 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

When you click the Save button, this particular server configuration will be saved for future use. You can go back and
edit the server configuration by selecting the entry in the list of servers and clicking the Edit Server button in the
Choose Server Configuration dialog. You can delete it by clicking the Delete button.

Server configurations can be imported and exported through the Choose Server Configuration dialog. Use the
Load Servers button to load a server configuration file and the Save Servers button to save a server configuration
file. Files can be exchanged with others to access the same remote servers.

Did you know?

Visualization centers can provide system-wide server configurations on web servers to allow non-experts to simply
select an already configured ParaView server. The format of the XML file for saving the server configurations is
discussed online on the ParaView Wiki at http://paraview.org/Wiki/Server_Configuration. These site-wide settings
can be loaded with the Fetch Servers button.

Connect to the remote server

To connect to the server, select the server configuration you just set up from the configuration list and click Connect .
We are now ready to build the visualization pipelines.

Common Errors

ParaView does not perform any kind of authentication when clients attempt to connect to a server. For that reason, we
recommend that you do not run pvserver on a computing resource that is open to the outside world.

ParaView also does not encrypt data sent between the client and server. If your data is sensitive, please ensure that
proper network security measures have been taken. The typical approach is to use an SSH tunnel.

Managing multiple clients

pvserver can be configured to accept connections from multiple clients at the same time. In this case only one, called
the master, can interact with the pipeline. Others clients are only allowed to visualize the data. The Collaboration
Panel shares information between connected clients.

To enable this mode, pvserver must be started with the --multi-clients flag:

pvserver --multi-clients

If your remote server is accessible from many users, you may want to restrict the access. This can be done with a
connect id. If your client does not have the same connect-id as the server you want to connect to, you will be prompted
for a connect-id. Then, if you are the master, you can change the connect-id in the Collaboration Panel .

Note that initial value for connect-id can be set by starting the pvserver (and respectively paraview) with the
--connect-id flag, for instance:

pvserver --connect-id=147

The master client can also disable further connections in the Collaboration Panel so you can work alone, for
instance. Once you are ready, you may allow other people to connect to the pvserver to share a visualization. This is
the default feature when pvserver is started with --multi-clients --disable-further-connections.

2.6. Remote and parallel visualization 201

http://paraview.org/Wiki/Server_Configuration

ParaView Users Guide Documentation, Release 5.8.1

Setting up a client/server visualization pipeline

Using paraview when connected to a remote server is not any different than when it’s being used in the default stand-
alone mode. The only difference, as far as the user interface goes, is that the Pipeline Browser reflects the name of

the server to which you are connected. The address of the server connection next to the icon changes from builtin
to cs://myhost:11111 .

Since the data processing pipelines are executing on the server side, all file I/O also happens on the server side. Hence,
the Open File dialog, when opening a new data file, will browse the file system local to the pvserver executable and
not the paraview client.

2.6.3 Remote visualization in pvpython

The pvpython executable can be used by itself for visualization of local data, but it can also act as a client that connects
to a remote pvserver. Before creating a pipeline in pvpython, use the Connect function:

Connect to remote server "myhost" on the default port, 11111
>>> Connect("myhost") # Connect to remote server "myhost" on a

specified port
>>> Connect("myhost", 11111)

Now, when new sources are created, the data produced by the sources will reside on the server. In the case of pvpython,
all data remains on the server and images are generated on the server too. Images are sent to the client for display or
for saving to the local filesystem.

2.6.4 Reverse connections

It is frequently the case that remote computing resources are located behind a network firewall, making it difficult to
connect a client outside the firewall to a server behind it. ParaView provides a way to set up a reverse connection that
reverses the usual client server roles when establishing a connection.

To use a remote connection, two steps must be performed. First, in paraview, a new connection must be config-
ured with the connection type set to reverse. To do this, open the Choose Server Configuration dialog through
the File > Connect menu item. Add a new connection, setting the Name to myhost (reverse)'', and select
``Client / Server (reverse connection) for Server Type . Click Configure . In the Edit Server
Launch Configuration dialog that comes up, set the Startup Type to Manual . Save the configuration. Next,
select this configuration and click Connect . A message window will appear showing that the client is awaiting a
connection from the server.

Fig. 2.25: Message window showing that the client is awaiting a connection from a server.

Second, pvserver must be started with the --reverse-connection (-rc) flag. To tell pvserver the name of the
client, set the --client-host (-ch) command-line argument to the hostname of the machine on which the paraview

202 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

client is running. You can specify a port with the --server-port (-sp) command-line argument.

pvserver -rc --client-host=mylocalhost --server-port=11111

When the server starts, it prints a message indicating the success or failure of connecting to the client. When the
connection is successful, you will see the following text in the shell:

Connecting to client (reverse connection requested)...
Connection URL: csrc://mylocalhost:11111
Client connected.

To wait for reverse connections from a pvserver in pvpython, you use ReverseConnect instead of Connect .

To wait for connections from a 'pvserver' on the default port 11111
>>> ReverseConnect()

Optionally, you can specify the port number as the argument.
>>> ReverseConnect(11111)

2.6.5 Understanding parallel processing

Parallel processing, put simply, implies processing the data in parallel, simultaneously using multiple workers. Typ-
ically, these workers are different processes that could be running on a multicore machine or on several nodes of a
cluster. Let’s call these ranks. In most data processing and visualization algorithms, work is directly related to the
amount of data that needs to be processed, i.e., the number of cells or points in the dataset. Thus, a straight-forward
way of distributing the work among ranks is to split an input dataset into multiple chunks and then have each rank op-
erate only an independent set of chunks. Conveniently, for most algorithms, the result obtained by splitting the dataset
and processing it separately is same as the result that we’d get if we processed the dataset in a single chunk. There are,
of course, exceptions. Let’s try to understand this better with an example. For demonstration purposes, consider this
very simplified mesh.

Now, let us say we want to perform visualizations on this mesh using three processes. We can divide the cells of the
mesh as shown below with the blue, yellow, and pink regions.

2.6. Remote and parallel visualization 203

ParaView Users Guide Documentation, Release 5.8.1

Once partitioned, some visualization algorithms will work by simply allowing each process to independently run the
algorithm on its local collection of cells. Take clipping as an example. Let’s say that we define a clipping plane and
give that same plane to each of the processes.

Each process can independently clip its cells with this plane. The end result is the same as if we had done the clipping
serially. If we were to bring the cells together (which we would never actually do for large data for obvious reasons),
we would see that the clipping operation took place correctly.

Ghost levels

Unfortunately, blindly running visualization algorithms on partitions of cells does not always result in the correct
answer. As a simple example, consider the external faces algorithm. The external faces algorithm finds all cell faces
that belong to only one cell, thereby, identifying the boundaries of the mesh.

Oops! We see that when all the processes ran the external faces algorithm independently, many internal faces where
incorrectly identified as being external. This happens where a cell in one partition has a neighbor in another partition.
A process has no access to cells in other partitions, so there is no way of knowing that these neighboring cells exist.

The solution employed by ParaView and other parallel visualization systems is to use ghost cells . Ghost cells are
cells that are held in one process but actually belong to another. To use ghost cells, we first have to identify all the
neighboring cells in each partition. We then copy these neighboring cells to the partition and mark them as ghost cells,
as indicated with the gray colored cells in the following example.

When we run the external faces algorithm with the ghost cells, we see that we are still incorrectly identifying some
internal faces as external. However, all of these misclassified faces are on ghost cells, and the faces inherit the ghost
status of the cell from which it came. ParaView then strips off the ghost faces, and we are left with the correct answer.

204 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

In this example, we have shown one layer of ghost cells: only those cells that are direct neighbors of the partition’s
cells. ParaView also has the ability to retrieve multiple layers of ghost cells, where each layer contains the neighbors
of the previous layer not already contained in a lower ghost layer or in the original data itself. This is useful when we
have cascading filters that each require their own layer of ghost cells. They each request an additional layer of ghost
cells from upstream, and then remove a layer from the data before sending it downstream.

Data partitioning

Since we are breaking up and distributing our data, it is prudent to address the ramifications of how we partition the
data. The data shown in the previous example has a spatially coherent partitioning. That is, all the cells of each
partition are located in a compact region of space. There are other ways to partition data. For example, you could have
a random partitioning.

Random partitioning has some nice features. It is easy to create and is friendly to load balancing. However, a serious
problem exists with respect to ghost cells.

In this example, we see that a single level of ghost cells nearly replicates the entire dataset on all processes. We have
thus removed any advantage we had with parallel processing. Because ghost cells are used so frequently, random
partitioning is not used in ParaView.

2.6. Remote and parallel visualization 205

ParaView Users Guide Documentation, Release 5.8.1

D3 Filter

The previous section described the importance of load balancing and ghost levels for parallel visualization. This section
describes how to achieve that.

Load balancing and ghost cells are handled automatically by ParaView when you are reading structured data (image
data, rectilinear grid, and structured grid). The implicit topology makes it easy to break the data into spatially coherent
chunks and identify where neighboring cells are located.

It is an entirely different matter when you are reading in unstructured data (poly data and unstructured grid). There is no
implicit topology and no neighborhood information available. ParaView is at the mercy of how the data was written to
disk. Thus, when you read in unstructured data, there is no guarantee of how well-load balanced your data will be. It is
also unlikely that the data will have ghost cells available, which means that the output of some filters may be incorrect.

Fortunately, ParaView has a filter that will both balance your unstructured data and create ghost cells. This filter is
called D3, which is short for distributed data decomposition. Using D3 is easy; simply attach the filter (located in
Filters > Alphabetical > D3) to whatever data you wish to repartition.

The most common use case for D3 is to attach it directly to your unstructured grid reader. Regardless of how well-load
balanced the incoming data might be, it is important to be able to retrieve ghost cell so that subsequent filters will
generate the correct data. The example above shows a cutaway of the extract surface filter on an unstructured grid. On
the left, we see that there are many faces improperly extracted because we are missing ghost cells. On the right, the
problem is fixed by first using the D3 filter.

2.6.6 Ghost Cells Generator

If your unstructured grid data is already partitioned satisfactorily but does not have ghost cells, it is possible to generate
them using the Ghost Cells Generator filter. This filter can be attached to a source just like the D3 filter. Unlike
D3 , it will not repartition the dataset, it will only generate ghost cells, which is needed for some algorithms to execute
correctly.

The Ghost Cells Generator has several options. Build If Required tells the filter to generate ghost cells only
if required by a downstream filter. Since computing ghost cells is a computationally and communications intensive
process, turning this option on can potentially save a lot of processing time. The Minimum Number Of Ghost Levels
specifies at least how many ghost levels should be generated if Build If Required is off. Downstream filters may
request more ghost levels than this minimum, in which case the Ghost Cells Generator will generate the requested
number of ghost levels. The Use Global Ids option makes use of a GlobalIds array if it is present if on. If off, ghost
cells are determined by coincident points.

206 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.6. Remote and parallel visualization 207

ParaView Users Guide Documentation, Release 5.8.1

208 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.6.7 ParaView architecture

Before we see how to use ParaView for parallel data processing, let’s take a closer look at the ParaView architecture.
ParaView is designed as a three-tier client-server architecture. The three logical units of ParaView are as follows.

• Data Server The unit responsible for data reading, filtering, and writing. All of the pipeline objects seen in the
pipeline browser are contained in the data server. The data server can be parallel.

• Render Server The unit responsible for rendering. The render server can also be parallel, in which case built-in
parallel rendering is also enabled.

• Client The unit responsible for establishing visualization. The client controls the object creation, execution,
and destruction in the servers, but does not contain any of the data (thus allowing the servers to scale without
bottlenecking on the client). If there is a GUI, that is also in the client. The client is always a serial application.

These logical units need not by physically separated. Logical units are often embedded in the same application, remov-
ing the need for any communication between them. There are three modes in which you can run ParaView.

The first mode, with which you are already familiar, is standalone mode. In standalone mode, the client, data server,
and render server are all combined into a single serial application. When you run the paraview application, you are
automatically connected to a builtin server so that you are ready to use the full features of ParaView.

The second mode is client-server mode. In client-server mode, you execute the pvserver program on a parallel
machine and connect to it with the paraview client application (or pvpython). The pvserver program has both the
data server and render server embedded in it, so both data processing and rendering take place there. The client and
server are connected via a socket, which is assumed to be a relatively slow mode of communication, so data transfer
over this socket is minimized. We saw this mode of operation in Section 2.6.2.

2.6. Remote and parallel visualization 209

ParaView Users Guide Documentation, Release 5.8.1

The third mode is client-render server-data server mode. In this mode, all three logical units are running in separate
programs. As before, the client is connected to the render server via a single socket connection. The render server and
data server are connected by many socket connections, one for each process in the render server. Data transfer over the
sockets is minimized.

Although the client-render server-data server mode is supported, we almost never recommend using it. The original
intention of this mode is to take advantage of heterogeneous environments where one might have a large, powerful
computational platform and a second smaller parallel machine with graphics hardware in it. However, in practice, we
find any benefit is almost always outstripped by the time it takes to move geometry from the data server to the render
server. If the computational platform is much bigger than the graphics cluster, then use software rendering on the large
computational platform. If the two platforms are about the same size, just perform all the computation on the graphics
cluster. The executables used for this mode are paraview (or pvpython) (acting as the client), pvdataserver for the
data-server, and pvrenderserver for the render-server.

2.6.8 Parallel processing in paraview and pvpython

To leverage parallel processing capabilities in paraview or pvpython, one has to use remote visualization, i.e., one
has to connect to a pvserver. The processing for connecting to this pvserver is not different from what we say in
Section 2.6.2 and Section 2.6.3. The only thing that changes is how the pvserver is launched.

You can start pvserver to run on more than one processing core using mpirun .

mpirun -np 4 pvserver

This will run pvserver on four processing cores. It will still listen for an incoming connection from a client on the
default port. The big difference when running pvserver this way is that when data is loaded from a source, it will be
distributed across the four cores if the data source is parallel aware and supports distributing the data across the
different processing cores.

To see how this data is distributed, run pvserver as the command above and connect to it with paraview. Next,
create another Sphere source using Source > Sphere. Change the array to color by to vtkProcessId . You will see
an image like Figure Fig. 2.26.

If a data reader or source is not parallel aware, you can still get the benefits of spreading the data among processing
cores by using the D3 filter. This filter partitions a dataset into convex regions and transfers each region to a different
processing core. To see an example of how D3 partitions a dataset, create a Source > Wavelet while paraview is still
connected to the pvserver. Next, select Filters > Alphabetical > D3 and click Apply . The output of D3 will not
initially appear different from the original wavelet source. If you color by vtkProcessId , however, you will see the
four partitions that have been distributed to the server processing cores.

210 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.26: Sphere source colored by vtkProcessId array that encodes the processing core on which the sphere data
resides. Here, the sphere data is split among the four processing cores invoked by the command mpirun -np 4
pvserver.

Fig. 2.27: Wavelet source processed by the D3 filter and colored by vtkProcessId array. Note how four regions of the
image data are split evenly among the four processing cores when pvserver is run with mpirun -np 4 pvserver .

2.6. Remote and parallel visualization 211

ParaView Users Guide Documentation, Release 5.8.1

2.6.9 Using pvbatch

In Section 2.6.8, we said that to use parallel processing capabilities, one has to use remote visualization, i.e., one must
use ParaView in a client-server mode with the client (paraview or pvpython) connecting to a server (pvserver) that
is being run in parallel using mpirun . However, there is one exception: pvbatch. pvpython and pvbatch are quite
similar in that both are similar to the python

executable that can be used to run Python scripts. The extra thing that these executables do when compared with
the standard python is that they initialize the environment so that any scripts that you run will be able to locate the
ParaView Python modules and libraries automatically. pvpython is exactly like the paraview executable without the
GUI. You can think of it as the GUI from paraview is replaced by a Python interpreter in pvpython. pvbatch, on
the other hand, can be thought of a pvserver where, instead of taking the control command from a remote client
(paraview or pvpython), in pvbatch, the commands are taken from a Python script that is executed in the pvbatch
executable itself. Since pvbatch is akin to the pvserver, unlike pvpython, it can be run in parallel using mpirun
. In that case, the root rank (or the first rank or the rank with index 0) is the one that acts as the client, interpreting
the Python script to execute the commands. Since pvbatch is designed to act is its own server, you cannot connect
to a remote server in the Python script, i.e., you cannot use simple.Connect . Furthermore, pvbatch is designed
for batch operation, which means that you can only specify the Python script as a command line argument. Unlike
pvpython, you cannot run this executable to get an interactive shell to enter Python commands.

process the sample.py script in single process mode.
> pvbatch sample.py

process the sample.py script in parallel.
> mpirun -np 4 sample.py

In general, you should use pvpython if you will be using the interpreter interactively and pvbatch if you are running
in parallel.

2.6.10 Fetching data to the client

Section 1.3.3 describes how to obtain information about a data object, but not how to access the data object itself. This
section describes several ways to access data from within a Python script. The client/server nature of ParaView requires
a couple steps to access the raw data. The Python script runs on the client side in either pvpython or paraview, so
one step involves moving the data from the server to the client. This can be accomplished with the following:

from paraview.simple import *
Connect("myhost")

Create a sphere source on myhost
s = Sphere()
full_sphere = servermanager.Fetch(s)

Here, the full dataset is moved from the server to the client.

The second step is required to deal with the fact that data on the remote server may be split across distributed processes.
By default, servermanager.Fetch(s) appends all the pieces on the different remote processes and produces the
appended data set on the client. The exact append operation depends on the type of dataset being retrieved. Composite
datasets are merged by treating the dataset piece on each distributed process as a block merged into a new multiblock
dataset, polygonal datasets are appended into a single polygonal dataset, rectilinear grids are appended into a single
rectilinear grid, and other datasets are appended into an unstructured grid. Distributed image datasets cannot currently
be fetched to the client. Care must be taken when fetching an entire dataset to the client because the data that fits on
many distributed processes on a remote system may not fit in client memory.

212 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Another option is to fetch just a single piece of the dataset on one remote process to the client. To do this, pass the rank
number of the remote process from which you want to retrieve the data to the Fetch function, e.g.,

Retrieve the piece of the data set on remote process 2
s = Sphere()
sphere_piece = servermanager.Fetch(s, 2)

Lastly, servermanager.Fetch provides a way to apply helper filters to the dataset that run at two stages. The filter for
the first stage is applied to the data on each remote process, and the filter for the second stage is applied to the results
from the first stage after they are gathered to the root server process. The results from the second stage of filtering are
then transferred from the root server process to the client.

In the next example, the Extract Surface filter is applied to a source with data on each process in the first stage. The
results are then assembled with the Append Geometry filter and sent to the client.

s = Sphere()
extract = servermanager.filters.ExtractSurface()
append = servermanager.filters.AppendGeometry()
full_surface = servermanager.Fetch(s, extract, append)

The second filter must be able to accept multiple connections and handle the output dataset type from the first filter.

2.6.11 Rendering

Rendering is the process of synthesizing the images that you see based on your data. The ability to effectively interact
with your data depends highly on the speed of the rendering. Thanks to advances in 3D hardware acceleration, fueled
by the computer gaming market, we have the ability to render 3D quickly even on moderately-priced computers. But, of
course, the speed of rendering is proportional to the amount of data being rendered. As data gets bigger, the rendering
process naturally gets slower.

To ensure that your visualization session remains interactive, ParaView supports two modes of rendering that are au-
tomatically flipped as necessary. In the first mode, still render , the data is rendered at the highest level of detail. This
rendering mode ensures that all of the data is represented accurately. In the second mode, interactive render , speed
takes precedence over accuracy. This rendering mode endeavors to provide a quick rendering rate regardless of data
size.

While you are interacting with a 3D view (for example, rotating, panning, or zooming with the mouse), ParaView uses
an interactive render. This is because, during the interaction, a high frame rate is necessary to make these features
usable and because each frame is immediately replaced with a new rendering while the interaction is occurring so
that fine details are less important during this mode. At any time when interaction of the 3D view is not taking place,
ParaView uses a still render so that the full detail of the data is available as you study it. As you drag your mouse in
a 3D view to move the data, you may see an approximate rendering. The full detail will be presented as soon as you
release the mouse button.

The interactive render is a compromise between speed and accuracy. As such, many of the rendering parameters
concern when and how lower levels of detail are used.

2.6. Remote and parallel visualization 213

ParaView Users Guide Documentation, Release 5.8.1

Basic Rendering Settings

Some of the most important rendering options are the LOD parameters. During interactive rendering, the geometry
may be replaced with a lower level of detail (LOD), an approximate geometry with fewer polygons.

The resolution of the geometric approximation can be controlled. In the proceeding images, the left image is the full
resolution, the middle image is the default decimation for interactive rendering, and the right image is ParaView’s
maximum decimation setting.

The 3D rendering parameters are located in the settings dialog box, which is accessed in the menu from the Edit >
Settings menu (ParaView > Preferences on the Mac). The rendering options in the dialog are in the Render View tab.

The options pertaining to the geometric decimation for interactive rendering are located in a section labeled
Interactive Rendering Options . Some of these options are considered advanced, so to access them, you have

to either toggle on the advanced options with the button or search for the option using the edit box at the top of the
dialog. The interactive rendering options include the following.

• LOD Threshold : Set the data size at which to use a decimated geometry in interactive rendering. If the geometry
size is under this threshold, ParaView always renders the full geometry. Increase this value if you have a decent
graphics card that can handle larger data. Try decreasing this value if your interactive renders are too slow.

• LOD Resolution : Set the factor that controls how large the decimated geometry should be. This control is set
to a value between 0 and 1. 0 produces a very small number of triangles but, possibly, with a lot of distortion. 1

produces more detailed surfaces but with larger geometry.

• Non Interactive Render Delay : Add a delay between an interactive render and a still render. ParaView
usually performs a still render immediately after an interactive motion is finished (for example, releasing the
mouse button after a rotation). This option can add a delay that can give you time to start a second interaction

before the still render starts, which is helpful if the still render takes a long time to complete.

• Use Outline For LOD Rendering : Use an outline in place of decimated geometry. The outline is an alter-
native for when the geometry decimation takes too long or still produces too much geometry. However, it is more
difficult to interact with just an outline.

ParaView contains many more rendering settings. Here is a summary of some other settings that can effect the rendering
performance regardless of whether ParaView is run in client-server mode or not. These options are spread among
several categories, and several are considered advanced.

• Translucent Rendering Options

– Depth Peeling : Enable or disable depth peeling. Depth peeling is a technique ParaView uses to
properly render translucent surfaces. With it, the top surface is rendered and then “peeled away” so
that the next lower surface can be rendered and so on. If you find that making surfaces transparent

214 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.6. Remote and parallel visualization 215

ParaView Users Guide Documentation, Release 5.8.1

really slows things down or renders completely incorrectly, then your graphics hardware may not be

implementing the depth peeling extensions well; try shutting off depth peeling.

– Depth Peeling for Volumes : Include volumes in depth peeling to correctly intermix volumes
and translucent polygons.

– Maximum Number Of Peels : Set the maximum number of peels to use with depth peeling. Using
more peels allows more depth complexity, but allowing less peels runs faster. You can try adjusting

this parameter if translucent geometry renders too slow or translucent images do not look correct.

• Miscellaneous

– Outline Threshold : When creating very large datasets, default to the outline representation. Sur-
face representations usually require ParaView to extract geometry of the surface, which takes time and
memory. For data with sizes above this threshold, use the outline representation, which has very little
overhead, by default instead.

– Show Annotation : Show or hide annotation providing rendering performance information. This

information is handy when diagnosing performance problems.

Note that this is not a complete list of ParaView rendering settings. We have left out settings that do not significantly
affect rendering performance. We have also left out settings that are only valid for parallel client-server rendering,
which are discussed in Section 2.6.11.

Basic Parallel Rendering

When performing parallel visualization, we are careful to ensure that the data remains partitioned among all of the
processes up to and including the rendering processes. ParaView uses a parallel rendering library called IceT . IceT
uses a sort-last algorithm for parallel rendering. This parallel rendering algorithm has each process independently
render its partition of the geometry and then composites the partial images together to form the final image.

The preceding diagram is an oversimplification. IceT contains multiple parallel image compositing algorithms such as
binary tree , binary swap , and radix-k that efficiently divide work among processes using multiple phases.

The wonderful thing about sort-last parallel rendering is that its efficiency is completely insensitive to the amount
of data being rendered. This makes it a very scalable algorithm and well suited to large data. However, the parallel
rendering overhead does increase linearly with the number of pixels in the image. Consequently, some of the rendering
parameters deal with the image size.

216 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.6. Remote and parallel visualization 217

ParaView Users Guide Documentation, Release 5.8.1

IceT also has the ability to drive tiled displays, which are large, high-resolution displays comprising an array of monitors
or projectors. Using a sort-last algorithm on a tiled display is a bit counterintuitive because the number of pixels to
composite is so large. However, IceT is designed to take advantage of spatial locality in the data on each process to
drastically reduce the amount of compositing necessary. This spatial locality can be enforced by applying the Filters >
Alphabetical > D3 filter to your data.

Because there is an overhead associated with parallel rendering, ParaView has the ability to turn off parallel rendering
at any time. When parallel rendering is turned off, the geometry is shipped to the location where display occurs.
Obviously, this should only happen when the data being rendered is small.

Image Level of Detail

The overhead incurred by the parallel rendering algorithms is proportional to the size of the images being generated.
Also, images generated on a server must be transfered to the client, a cost that is also proportional to the image size.
To help increase the frame rate during interaction, ParaView introduces a new LOD parameter that controls the size of
the images.

During interaction while parallel rendering, ParaView can optionally subsample the image. That is, ParaView will
reduce the resolution of the image in each dimension by a factor during interaction. Reduced images will be rendered,
composited, and transfered. On the client, the image is inflated to the size of the available space in the GUI.

The resolution of the reduced images is controlled by the factor with which the dimensions are divided. In the proceed-
ing images, the left image has the full resolution. The following images were rendered with the resolution reduced by
a factor of 2, 4, and 8, respectively.

ParaView also has the ability to compress images before transferring them from server to client. Compression, of
course, reduces the amount of data transferred and, therefore, makes the most of the available bandwidth. However,
the time it takes to compress and decompress the images adds to the latency.

ParaView contains several different image compression algorithms for client-server rendering. The first uses LZ4 com-
pression that is designed for high-speed compression and decompression. The second option is a custom algorithm
called Squirt , which stands for Sequential Unified Image Run Transfer. Squirt is a run-length encoding compression
that reduces color depth to increase run lengths. The third algorithm uses the Zlib compression library, which imple-
ments a variation of the Lempel-Ziv algorithm. Zlib typically provides better compression than Squirt, but it takes
longer to perform and, hence, adds to the latency. paraview Windows and Linux executables include a compression
option that uses NVIDIA’s NVPipe library for hardware-accelerated compression and decompression if a Kepler-class
or higher NVIDIA GPU is available.

218 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Parallel Render Parameters

Like the other 3D rendering parameters, the parallel rendering parameters are located in the Settings dialog. The
parallel rendering options in the dialog are in the Render View tab (intermixed with several other rendering options
such as those described in Section 2.6.11). The parallel and client-server options are divided among several categories,
and several are considered advanced.

• Remote/Parallel Rendering Options

– Remote Render Threshold : Set the data size at which to render remotely in parallel or to render locally.
If the geometry is over this threshold (and ParaView is connected to a remote server), the data is rendered
in parallel remotely, and images are sent back to the client. If the geometry is under this threshold, the
geometry is sent back to the client, and images are rendered locally on the client.

– Still Render Image Reduction Factor : Set the sub-sampling factor for still (non-interactive) ren-
dering. Some large displays have more resolution than is really necessary, so this sub-sampling reduces the

resolution of all images displayed.

• Client/Server Rendering Options

– Image Reduction Factor : Set the interactive subsampling factor. The overhead of parallel rendering is
proportional to the size of the images generated. Thus, you can speed up interactive rendering by specifying
an image subsampling rate. When this box is checked, interactive renders will create smaller images, which

are then magnified when displayed. This parameter is only used during interactive renders.

• Image Compression

2.6. Remote and parallel visualization 219

ParaView Users Guide Documentation, Release 5.8.1

– Before images are shipped from server to client, they can optionally be compressed using one of three
available compression algorithms: LZ4 , Squirt , or Zlib . To make the compression more effective, either
algorithm can reduce the color resolution of the image before compression. The sliders determine the

amount of color bits saved. Full color resolution is always used during a still render.

– Suggested image compression presets are provided for several common network types. When attempting
to select the best image compression options, try starting with the presets that best match your connection.

Parameters for Large Data

The default rendering parameters are suitable for most users. However, when dealing with very large data, it can help
to tweak the rendering parameters. While the optimal parameters depend on your data and the hardware on which
ParaView is running, here are several pieces of advice that you should follow.

• If there is a long pause before the first interactive render of a particular dataset, it might be the creation of the
decimated geometry. Try using an outline instead of decimated geometry for interaction. You could also try
lowering the factor of the decimation to 0 to create smaller geometry.

• Avoid shipping large geometry back to the client. The remote rendering will use the power of the entire server
to render and ship images to the client. If remote rendering is off, geometry is shipped back to the client. When
you have large data, it is always faster to ship images than to ship data. (Although, if your network has a high
latency, this could become problematic for interactive frame rates.)

• Adjust the interactive image sub-sampling for client-server rendering as needed. If image compositing is slow,
if the connection between client and server has low bandwidth, or if you are rendering very large images, then a
higher subsample rate can greatly improve your interactive rendering performance.

• Make sure Image Compression is on. It has a tremendous effect on desktop delivery performance, and the
artifacts it introduces, which are only there during interactive rendering, are minimal. Lower bandwidth con-
nections can try using Zlib instead of Squirt compression. Zlib will create smaller images at the cost of longer
compression/decompression times.

• If the network connection has a high latency, adjust the parameters to avoid remote rendering during interaction.
In this case, you can try turning up the remote rendering threshold a bit, and this is a place where using the outline
for interactive rendering is effective.

• If the still (non-interactive) render is slow, try turning on the delay between interactive and still rendering to avoid
unnecessary renders.

2.7 Memory Inspector

The ParaView Memory Inspector panel provides users with a convenient way to monitor ParaView’s memory
usage during interactive visualization. It also provides developers with a point-and-click interface for attaching a de-
bugger to local or remote client and server processes. As explained earlier, both the Information panel and the
Statistics Inspector are prone to over and under estimate the total memory used for the current pipeline. The
Memory Inspector addresses those issues through direct queries to the operating system. A number of diagnostic
statistics are gathered and reported, including the total memory used by all processes on a per-host basis, the total
cumulative memory use by ParaView on a per-host basis, and the individual per-rank use by each ParaView process.
When memory consumption reaches a critical level, either cumulatively on the host or in an individual rank, the corre-
sponding GUI element will turn red, alerting you that you are in danger of potentially being shut down. This gives you
a chance to save state and restart the job with more nodes to avoid losing your work. On the flip side, knowing when
you’re not close to using the full capacity of available memory can be useful to conserve computational resources by
running smaller jobs. Of course, the memory foot print is only one factor in determining the optimal run size.

220 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.28: The main UI elements of the Memory Inspector panel. A: Process Groups, B: Per-Host statistics, C:
Per-Rank statistics, and D: Update controls.

2.7.1 User interface and layout

The Memory Inspector panel displays information about the current memory usage on the client and server hosts.
Fig. 2.28 shows the main UI elements labeled A-D. A number of additional features are provided via specialized context
menus accessible from the Client and Server group, Host, and Rank’s UI elements. The main UI elements are:

A. Process Groups

1. Client : There is always a client group that reports statistics about the ParaView client.

2. Server : When running in client-server mode, a server group reports statistics about the hosts where
pvserver processes are running.

3. Data Server : When running in client-data-render server mode, a data server group reports statistics about
the hosts where pvdataserver processes are running.

4. Render Server : When running in client-data-render server mode, a render server group reports statistics
about the hosts where pvrenderserver processes are running.

B. Per-Host Statistics : Per-host statics are reported for each host where a ParaView process is running. Hosts are
organized by host name, which is shown in the first column. Two statics are reported: 1) total memory used by
all processes on the host and 2) ParaView’s cumulative usage on this host. The absolute value is printed in a bar
that shows the percentage of the total available memory used. On systems where job-wide resource limits are
enforced, ParaView is made aware of the limits via the PV_HOST_MEMORY_LIMIT environment variable, in
which case, ParaView’s cumulative percent used is computed using the smaller of the host total and the resource
limit.

C. Update Controls : By default, when the panel is visible, memory use statistics are updated automatically as
pipeline objects are created, modified, or destroyed and after the scene is rendered. Updates may be triggered
manually by using the refresh button. Automatic updates may be disabled by un-checking the Auto-update check
box. Queries to remote systems have proven to be very fast even for fairly large jobs. Hence, the auto-update
feature is enabled by default.

2.7. Memory Inspector 221

ParaView Users Guide Documentation, Release 5.8.1

D. Host Properties Dialog : The Host context menu provides the Host Properties dialog, which reports various
system details such as the OS version and the CPU version, as well as the memory installed and available to the
host context and process context. While the Memory Inspector panel reports memory use as a percent of the
available in the given context, the Host Properties dialog reports the total memory installed and available in
each context. Comparing the installed and available memory can be used to determine if you are impacted by
resource limits.

Fig. 2.29: Host properties dialog.

2.7.2 Advanced debugging features

Remote commands

The Memory Inspector Panel provides a remote (or local) command feature, allowing you to execute a shell com-
mand on a given host. This feature is exposed via a specialized Rank item context menu. Because we have information
such as a rank’s process id, individual processes may be targeted. For example, this allows you to quickly attach a
debugger to a server process running on a remote cluster. If the target rank is not on the same host as the client, then the
command is considered remote. Otherwise, it is considered local. Therefore, remote commands are executed via ssh
, while local commands are not. A list of command templates is maintained. In addition to a number of pre-defined
command templates, you may add templates or edit existing ones. The default templates allow you to:

• Attach gdb to the selected process

• Run top on the host of the selected process

• Send a signal to the selected process

Prior to execution, the selected template is parsed, and a list of special tokens are replaced with runtime-determined
or user-provide values. User-provided values can be set and modified in the dialog’s parameter group. The command,
with tokens replaced, is shown for verification in the dialog’s preview pane.

The following tokens are available and may be used in command templates as needed:

1. $TERM_EXEC$: The terminal program that will be used to execute commands. On Unix systems, xterm is
typically used. On Windows systems, cmd.exe is typically used. If the program is not in the default path, then
the full path must be specified.

2. $TERM_OPTS$: Command line arguments for the terminal program. On Unix, these may be used to set the
terminals window title, size, colors, and so on.

222 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.30: The remote command dialog.

2.7. Memory Inspector 223

ParaView Users Guide Documentation, Release 5.8.1

3. SSH_EXEC : The program to use to execute remote commands. On Unix, this is typically ssh. On Windows,
one option is plink.exe. If the program is not in the default path, then the full path must be specified.

4. FE_URL : Ssh URL to use when the remote processes are on compute nodes that are not visible to the outside
world. This token is used to construct command templates where two ssh hops are made to execute the command.

5. PV_HOST : The hostname where the selected process is running.

6. PV_PID : The process-id of the selected process.

Note: On Windows, the debugging tools found in Microsoft’s SDK need to be installed in addition to Visual Studio
(e.g., windbg.exe). The ssh program plink.exe for Windows doesn’t parse ANSI escape codes that are used by
Unix shell programs. In general, the Windows- specific templates need some polishing.

Stack trace signal handler

The Process Group’s context menu provides a back trace signal handler option. When enabled, a signal handler is
installed that will catch signals such as SEGV, TERM, INT, and ABORT and that will print a stack trace before the
process exits. Once the signal handler is enabled, you may trigger a stack trace by explicitly sending a signal. The stack
trace signal handler can be used to collect information about crashes or to trigger a stack trace during deadlocks when
it’s not possible to ssh into compute nodes. Sites that restrict users’ ssh access to compute nodes often provide a way
to signal running processes from the login node. Note that this feature is only available on systems that provide support
for POSIX signals, and we currently only have implemented stack trace for GNU-compatible compilers.

2.7.3 Compilation and installation considerations

If the system on which ParaView will run has special resource limits enforced, such as job-wide memory use limits, or
non-standard per-process memory limits, then the system administrators need to provide this information to the running
instances of ParaView via the following environment variables. For example, those could be set in the batch system
launch scripts.

1. PV_HOST_MEMORY_LIMIT : For reporting host-wide resource limits.

2. PV_PROC_MEMORY_LIMIT : For reporting per-process memory limits. that are not enforced via standard
Unix resource limits.

A few of the debugging features (such as printing a stack trace) require debug symbols. These fea-
tures will work best when ParaView is built with CMAKE_BUILD_TYPE=Debug or, for release builds,
CMAKE_BUILD_TYPE=RelWithDebugSymbols.

2.8 Multiblock Inspector

Composite datasets (Section 1.3) such as multiblock datasets and AMR are often encountered when visualizing results
from several scientific simulation codes e.g. OpenFOAM, Exodus, etc. Readers for several of these simulation file
formats support selecting which blocks to read. Additionally, you may want to control display properties such as
visibility, opacity, and color for individual blocks or subtress. You can use the Multiblock Inspector panel for this.

Fig. 2.31 shows the Multiblock Inspector showing the hieararchy from an Exodus dataset. The panel tracks the
active source and reflects the structure for the data produced by the active source. The display properties reflect their
state in the active view.

To show or hide a block you have to click on the checkbox next to the block name. Toggling the visibility of a non-leaf
block, affects the visibility of the entire subtree.

The first column reflects the color used for the block. The color for a block can be specified in multiple ways. First, you
can choose to not use any block specific overrides and simply let the default display properties (Section 1.4.3) affect

224 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.31: The Multiblock Inspector

2.8. Multiblock Inspector 225

ParaView Users Guide Documentation, Release 5.8.1

the rendering. This is the default behavior. When that is the case for any block, it is indicated in the color column by an

empty dotted circle . Second, you can explicitly override the color to use for a block or a subtree. To do this, simply
double click on the color column next to the block of interest. This will pop up the color chooser dialog. Explicitly

overridden color for a block is indicated by a solid filled circle icon filled with the selected color. When an explicit
color is set on a non-leaf node, all its children (and their children) inherit that color unless explicitly overridden. For

such nodes that have a color inherited from their parent, we use the dotted-circle icon filled with a pattern icon .

The second column reflects the opacity override for the blocks. Similar to color, the opacity could be simply using

value from the display properties , or explicitly set , or inhertied from parent node .

Did you know?

In most cases with multiblock datasets, ParaView uses the vtkBlockColors array for coloring. This is an array filled
with random values so that each block can be colored using a different color. That makes it easier to visually see each
of the blocks in the view. When in this mode, the Multiblock Inspector ‘s color column shows the color used for

each of the blocks using the same icon as the one used for inherited colors i.e. .

You can change colors and opacities for a specific block by double clicking on the corresponding icon. This allows
setting values one at a time. For specifying color and opacity overrides for multiple elements, you can select the items
and then right click to get the context menu. The context menu allows you to change these properties for all the selected
items, as shown in Fig. 2.32.

Fig. 2.32: The Multiblock Inspector context menu.

Besides using the Multiblock Inspector to set color and opacity overrides for blocks, you can also directly changes
these parameters from the Render View itself. Simply right-click in the render view on the block of interest and you’ll
get a context menu, Fig. 2.33, that allows changing the block properties and are more.

Another useful feature with the Multiblock Inspector is selection. If you simply click on any row in the inspector,
you will select the block (or subtree) and the active view will highlight the selected block(s). Conversely, if you make

226 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.33: Context menu in Render View can be used to change block display properties.

a block-based selection in the active Render View using , you will see the corresponding blocks highlighted in the
Multiblock Inspector panel.

2.9 Annotations

Explicit labeling and annotation of particular data values is often an important element in data visualization and analysis.
ParaView provides a variety of mechanisms to enable annotation in renderings ranging from free floating text rendered
alongside other visual elements in the render view to data values associated with particular points or cells.

2.9.1 Annotation sources

Several types of text annotations can be added through the Sources > Alphabetical menu. Text from these sources
is drawn on top of 3D elements in the render view. All annotation sources share some common properties under the
Display section of the Properties panel. These include Font Properties such as the font to use, the size of the
text, its color, opacity, and justification, as well as text effects to apply such as making it bold, italic, or shadowed.

Fig. 2.34: Font property controls in annotation sources and filters.

There are three fonts available in ParaView: Arial, Courier, and Times. You can also supply an arbitrary TrueType

2.9. Annotations 227

ParaView Users Guide Documentation, Release 5.8.1

font file (*.ttf) to use by selecting the File entry in the popup menu under Font Properties and clicking on the ...
button to the right of the font file text field. A file selection dialog will appear letting you choose a font file from the
file system on which paraview (or pvpython) is running.

The remaining display properties control where the text is placed in the render view. There are two modes for placement,
one that uses predefined positions relative to the render view, and one that enables arbitrary interactive placement in the
render view. The first mode is active when the Use Window Location checkbox is selected. It enables the annotation
to be placed in one of the four corners of the render view or centered horizontally at the top or bottom of the render
view. Buttons with icons representing the location are shown in the Pipeline browser. These buttons correspond to
locations in the render view as depicted in Fig. 2.35.

Fig. 2.35: Annotation placement buttons and where they place the annotation.

The second mode, activated by clicking the Lower Left Corner checkbox, lets you arbitrarily place the annotation.
If the Interactivity property is enabled, you can click and drag the annotation in the render view to place it, or
you can manually enter a location where the lower left corner of the annotation’s bounding box should be placed.
The coordinates are defined in terms of fractional coordinates that range from [0, 1] in the x and y dimensions. The
coordinate system of the render view has a lower left origin, so a Lower Left Corner value of [0, 0] will place the
annotation in the lower left corner of the render view.

228 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Text source

The Text source enables you to add a text annotation in the render view. It has one property defining what text is
displayed. Text can be multiline, and it can contain numbers and unicode characters. Text may also contain Mathtex
expressions between starting and ending dollar signs. Mathtext expressions are a subset of TeX math expressions [dt]
. When Mathtext is used, the text can only be on a single line.

Fig. 2.36: An example of the Text source annotation in the upper left corner with a math expression rendered from a
Mathtext [dt] expression.

Annotate Time source

The Annotate Time source is nearly identical to the Text source, but it also offers access to the current time value
set in ParaView. The time value is placed in the first format specifier in the Format text property. The format specifier
can be any number format valid for printf and related functions in the C standard library. The default format results
in renderig the time value with six decimal digits of precision. Only one format specifier is valid in the property.
Additional specifiers after the first will produce undefined results in the annotation text.

2.9.2 Annotation filters

The annotation sources described in the previous section are available for adding text annotations tht do not depend on
any loaded datasets. To create annotations that show values from an available data source in the Pipeline Browser
, several annotation filters are available. The properties available to change the text font and annotation location are
exactly the same as those available for the annotation sources described in the previous section.

2.9. Annotations 229

ParaView Users Guide Documentation, Release 5.8.1

Annotate Attribute Data filter

The Annotate Attribute Data makes it possible to create an annotation with a data value from an array (or at-
tribute) in a dataset. To use the filter, first select the data array with the data of interest in the Select Input Array .
These arrays may be point, cell, or field data arrays. The Element Id property specifies the index of the point or cell
whose value should be shown in the annotation. If the selected input array is a field array (not associated with points
or cells), the Element Id specifies the tuple of the array to show. When running in parallel, the Process Id denotes
the process that holds the array from which the value should be obtained.

Fig. 2.37: Properties of the Annotate Attribute Data filter.

The Prefix text property precedes the attribute value in the rendered annotation. There is no formatting string - the
number is appended after the prefix. If the array value selected is a scalar value, the annotation will contain just the
number. On the other hand, if the array value is from a multicomponent array, the individual components will be added
to the annotation label in a space-separated list that is surrounded by parentheses.

Annotate Global Data filter

Some file formats include the concept of global data, a single data value stored in the data array for each time step.
ParaView stores the set of such data values as a field data array associated with the dataset with the same number of
values as timesteps. To display these global values in the render view, use the Annotate Global Data filter. The
Select Arrays popup menu shows the available field data arrays. The Prefix and Suffix properties come before
and after the data value in the annotation, respectively. The Format property is a C language number format specifier.

230 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Annotate Time Filter

A nice feature of ParaView is that it supports data sources that produce different data at different times. Examples
include file readers that read in data for a requested time step and certain temporal filters. Each data source advertises
to ParaView the time values for which it can produce data. The data produced and displayed in ParaView depends on
the time you set in the ParaView VCR Controls or Time Inspector panel.

What is even nicer is that you can have several data sources that each advertise and respond to a possibly unique set
of times. That is, available sources do not need to advertise that they support the same set of time points - in fact,
they may define data at entirely different time points. Given a requested time, each data source will produce the data
corresponding to the time it supports closest to the requested time. This features makes it possible to create animations
from multiple datasets varying at different time resolutions, for instance.

While the Annotate Time source can be used to display ParaView’s currently requested time, it does not show the
time value to which a particular data source is responding. For example ParaView may be requesting data for time
5.0, but if a source produces data for time values 10.0 and above, it will produce the data for time 10.0, even though
time 5.0 was requested. To show the time for which a data source is producing data, you can use the Annotate Time
Filter . Simply attach it to the source of interest. If several data sources are present, a separate instance of this filter
may be attached to each one.

This property includes Shift and Scale parameters used to linearly transform the displayed time. The time value is
first multiplied by the scale and then the shift is then added to it.

Environment Annotation filter

If you want to display information about the environment in which a visualization was generated, use the Environment
Annotation filter. By attaching this filter to a data source, you can have it automatically display your user name on
the system running ParaView, show which operating system was used to generate it, present the date and time when
the visualization was generated, and show the file name of the source data if applicable. Each of these items can be
enabled or disabled by checkboxes in the Properties panel for this filter.

If the input source for this filter is a file reader, the File Name property is initialized to the name of the file. A checkbox
labeled Display Full Path is available to show the full path of the file, but if unchecked, only the file name will
be displayed. This default file path can be overridden by changing the text in the File Name property. If this filter
is attached to a filter instead of a reader, the file path will be initialized to an empty string. It can be changed to the
original file name manually, or an arbitrary string if so desired.

Python Annotation filter

The most versatile annotation filter, the Python Annotation filter, offers the most general way of generating anno-
tations that include information about the dataset. Values from point, cell, field, and row data arrays may be accessed
and combined with mathematical operations in a short Python expression defined in the Expression property. The
type of data arrays available for use in the Expression is set with the Array Association property.

Before going further, let’s look at an example of how to use the Python Annotation filter. Assume you want to show
a data value at from a point array named Pressure at point index 22. First, set the Array Association to Point
Data to ensure point data arrays can be referenced in the Python annotation expression. To show the pressure value at
point 22, set the Expression property to

Pressure[22]

You can augment the Python expression to give the annotation more meaning. To add a prefix, set the Expression to

'Pressure: %f' % (Pressure[22])

2.9. Annotations 231

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.38: An example of a basic Python Annotation filter showing the value of the Pressure array at point 22.

noindent All data arrays in the chosen association are provided as variables that can be referenced in the expression as
long as their names are valid Python variables. Array names that are invalid Python variable names are available through
a modified version of the array name. This sanitized version of the array name consists of the subset of characters in
the array name that are letters, numbers, or underscore (_) joined together without spaces in the order in which they
appear in the original array name. For example, an array named Velocity X will be made available in the variable
VelocityX .

Point and cell data in composite datasets such as multiblock datasets is accessed somewhat differently than point or
cell data in non-composite datasets. The expression

Pressure[22]

retrieves a single scalar value from a point array in a non-composite dataset, the same expression retrieves the 22nd
element of the Pressure array in each block. These values are held in a VTKCompositeDataArray, which is a data
structure that holds arrays associated with each block in the dataset. Hence, when the expression

Pressure[22]

is evaluated on a composite dataset, the value returned and displayed is actually an assemblage of array values from
each block. To access the value from a single block, the array from that block must be selected from the Arrays
member of the result VTKCompositeDataArray. To show the Pressure value associated with 22nd point of block 2,
for example, set the expression to

Pressure[22].Arrays[2]

This expression yields a single data value in the rendered annotation, assuming that the Pressure array has a single
component. To show a range of array values, use a Python range expression in the index into the Pressure field, e.g.,

Pressure[22:24].Arrays[2]

This will show the Pressure values for points 22 and 23 from block 2. You can also retrieve more than one array
using an index range on the Arrays member, e.g.,

Pressure[22:24].Arrays[2:5]

This expression evaluates to Pressure for points 22 and 23 for blocks 2, 3, and 4.

The Array Association is really a convenience to make the set of data arrays of the given association available as
variables that can be used in the Expression . The downside of using these array names is that arrays from only one
array association are available at a time. That means annotations that require the combination of a cell data array and
point data array, for example, cannot be expressed with these convenience Python variables alone.

Fortunately, you can access any array in the input to this filter with a slightly more verbose expression. For example,
the following expression multiplies a cell data value by a point data value:

232 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

inputs[0].CellData['Volume'][0] * inputs[0].PointData['Pressure'][0]

Note that the arrays in the input are accessed in the above example using their original array names.

In the example above, the expression inputs[0] refers to the first input to the filter. While this filter can take only
one input, it is based on the same code used by the Python Calculator (described in Section 1.5.9), which puts its
several inputs into a Python list, hence the input to the Python Annotation filter is referenced as inputs[0] .

In addition to making variables for the current array association available in the expression, this filter provides some
other variables that can be useful when computing an annotation value.

• points : Point locations (available for datasets with explicit points).

• time_value , t_value : The current time value set in ParaView.

• time_steps , t_steps : The number of timesteps available in the input.

• time_range , t_range : The range of timesteps in the input.

• time_index , t_index : The index of the current timestep in ParaView.

There are some situations where the variables above are not defined. If the input has no explicitly defined points, e.g.,
image data, the points variable is not defined. If the input does not define timesteps, the time_* and t_* variables
are not defined.

Common Errors

The time-related variables are not needed to index into point or cell data arrays. Only the point and cell arrays loaded
for the current timestep are available in the filter. You cannot access point or cell data from arbitrary timesteps from
within this filter.

With the capabilities in this filter, it is possible to reproduce the other annotation sources and filters, as shown below.

• Text source: To produce the text “My annotation”, write "My annotation"

• Annotate Time source: To produce the equivalent of Time: %f, write "Time :%f" % time_value

• Annotate Attribute Data filter: To produce the equivalent of setting Select Input Array to EQPS,
Element Id to 0 and Process Id to 0, and Prefix to Value is:, write 'Value is: %.12f' %
(inputs[0].CellData['EQPS'][0]) .

• Annotate Global Data filter: To produce the same annotation as setting Select Arrays to KE, Prefix
to Value is: , Format to %7.5g, and empty suffix, write "Value is: %7.5g" % (inputs[0].
FieldData['KE'].Arrays[0][time_index])

• Annotate Time Filter : To produce the equivalent of setting Format to Time: %f, Shift to 3, and Scale
to 2, write "Time: %f" % (2*time_value + 3) .

The examples above are meant to illustrate the versatility of the Python Annotation filter. Using the specialized
annotation sources and filters are likely to be more convenient than entering the expressions in the examples.

2.9. Annotations 233

ParaView Users Guide Documentation, Release 5.8.1

2.10 Axes Grid

Oftentimes, you want to render a reference grid in the backgroud for a visualization – think axes in a chart view, except
this time we are talking of the 3D Render View . Such a grid is useful to get an understanding for the data bounds and
placement in 3D space. In such cases, you use the Axes Grid . Axes Grid renders a 3D grid with labels around the
rendered scene. In this chapter, we will take a closer look at using and customizing the Axes Grid .

2.10.1 The basics

To turn on the Axes Grid for a Render View , you use the Properties panel. Under the View section, you check
the Axes Grid checkbox to turn the Axes Grid on for the active view.

Clicking on the Edit button will pop up the Axes Grid properties dialog (Fig. 2.39) that allows you to customize the
Axes Grid . As with the Properties panel, this is a searchable dialog, hence you can use the Search box at the top

of the dialog to search of properties of interest. At the same time, the button can be used to toggle between default
and advanced modes for the panel.

Using this dialog, you can change common properties like the titles (X Title , Y Title , and Z Title), title and
label fonts using Title Font Properties and Label Font Properties for each of the axes directions, as well as
the Grid Color . Besides labelling the axes, you can render a grid by checking Show Grid . Once you have the Axes

Grid setup to your liking, you can use the to save your selections so that they are automatically loaded next time
you launch ParaView. You can always use the to revert back to ParaView defaults.

2.10.2 Use cases

To get a better look at the available customizations, let’s look at various visualizations possible and then see how you can
set those up using the properties on the Edit Axes Grid dialog. In these examples, we use the disk_out_ref.ex2
example dataset packaged with ParaView.

234 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.39: Edit Axes Grid dialog is used to customize the Axes Grid .
2.10. Axes Grid 235

ParaView Users Guide Documentation, Release 5.8.1

In the images above, on the left is the default Axes Grid . Simply turning on the visibility of the Axes Grid will
generate such a visualization. The axes places always stay behind the rendered geometry even as you interact with the
scene. As you zoom in and out, the labels and ticks will be updated based on visual cues.

To show a grid along the axes planes, aligned with the ticks and labels, turn on the Show Grid checkbox, resulting in
a visualization on the right.

By default, the gridded faces are always the farthest faces i.e. they stay behind the rendered geometry and keep on
updating as you rotate the scene. To fix which faces of the bounding-box are to be rendered, use the Faces To Render
button (it’s an advanced property, so you may have to search for it using the Seach box in the Edit Axes Grid dialog).
Suppose, we want to label just one face, the lower XY face. In that case, uncheck all the other faces except Min-XY in
menu popped up on clicking on the Faces to Render button. This will indeed just show the min-XY face, however
as you rotate the scene, the face will get hidden as soon as the face gets closer to the camera than the dataset. This
is because, by default, Cull Frontfaces is enabled. Uncheck Cull Frontfaces and ParaView will stop removing
the face as it comes ahead of the geometry, enabling a visualization as follows.

Besides controlling which faces to render, you can also control where the labels are placed. Let’s say we want ParaView
to decide how to place labels along the Y axis, however for the X axis, we want to explicitly label the values 2.5, 0.5,
−0.5, and −4.5. To that, assuming we are the advanced mode for the Edit Axes Grid panel, check X Axis Use
Custom Labels . That will show a table widget that allows you to add values as shown below.

Using the button, add the custom values. While at it, let’s also change the X Axis Label Font Properties
and X Axis Title Font Properties to change the color to red and similar for the Y axis, let’s change the color
to green. Increase the title font sizes to 18, to make them stand out and you will get a visualization as follows (below,
left).

236 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

2.10. Axes Grid 237

ParaView Users Guide Documentation, Release 5.8.1

Here we see that both sides of the axis plane are labeled. Suppose you only want to label one of the sides, in that case
use the Axes To Label property to uncheck all but Min-X and Min-Y . This will result in the visualization shown
above, right.

2.10.3 Axes Grid in pvpython

In pvpython, Axes Grid is accessible as the AxesGrid property on the render view.

>>> renderView = GetActiveView()

AxesGrid property provides access to the AxesGrid object.
>>> axesGrid = renderView.AxesGrid

To toggle visibility of the axes grid,
>>> axesGrid.Visibility = 1

All properties on the Axes Grid that you set using the Edit Axes Grid dialog are available on this axesGrid object
and can be changed as follows:

>>> axesGrid.XTitle = 'X Title'
>>> axesGrid.XTitleColor = [0.6, 0.6, 0.0]
>>> axesGrid.XAxisLabels = [-0.5, 0.5, 2.5, 3.5]

Note you can indeed use the tracing capabilities described in Section 1.1.6 to determine what Python API to use to
change a specific property on the Edit Axes Grid dialog or use help .

>>> help(axesGrid)
Help on GridAxes3DActor in module paraview.servermanager object:

class GridAxes3DActor(Proxy)
| GridAxes3DActor can be used to render a grid in a render view.
|
| Method resolution order:
| GridAxes3DActor
| Proxy

(continues on next page)

238 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

(continued from previous page)

| __builtin__.object
|
| Methods defined here:
|
| Initialize = aInitialize(self, connection=None, update=True)
|
| --
| Data descriptors defined here:
|
| AxesToLabel
| Set the mask to select the axes to label. The axes labelled will be a subset of␣
→˓the
| axes selected depending on which faces are also being rendered.
|
| CullBackface
| Set to true to hide faces of the grid facing away from the camera i.e. hide all
| back faces.
|
| CullFrontface
| Set to true to hide faces of the grid facing towards from the camera i.e. hide␣
→˓all
| front faces.
|
| DataPosition
| If data is being translated, you can show the original data bounds for the axes
| instead of the translated bounds by setting the DataPosition to match the
| translation applied to the dataset.
|
...

2.11 Customizing ParaView

ParaView can be customized in a number of ways to tailor it to your preferences and needs. Customization options
include setting general application behavior, customizing default property values used for filters, representations, and
views, and customizing aspects of the paraview client. This chapter describes the different ways to customize Par-
aView.

2.11.1 Settings

As with any large application, paraview provides mechanisms to customize some of its application behavior. These
are referred to as application settings . or just settings. Such settings can be changed using the Settings dialog,
which is accessed from the Edit > Settings menu (ParaView > Preferences on the Mac). We have seen parts of this
dialog earlier, e.g., in Section 2.1.2, Section 2.6.11, and Section 2.6.11. In this section, we will take a closer look at
some of the other options available in this dialog.

The Settings dialog is split into several tabs. The General tab consolidates most of the miscellaneous settings.
The Camera tab enables you to change the mouse interaction mappings for the Render View and similar views. The
Render View tab, which we saw earlier in Section 2.6.11 and Section 2.6.11, provides options in regards to rendering
in Render View and similar views. The Color Palette tab is used to change the active color palette.

2.11. Customizing ParaView 239

ParaView Users Guide Documentation, Release 5.8.1

Using this dialog is not much different than the Properties panel. You have the Search box at the top, which allows

you to search properties matching the input text (Section 2.1.1). The button can be used to toggle between default
and advanced modes.

To apply the changes made to any of the settings, use the Apply or OK buttons. OK will apply the changes and close
the dialog, while Cancel will reject any changes made and close the dialog. Any changes made to the options in this
dialog are persistent across sessions. That is, the next time you launch paraview, you’ll still be using the same settings
chosen earlier. To revert to the default, use the Restore Defaults button. You can also manually edit the setting file
as in Section 2.11.2. Furthermore, site maintainers can provide site-wide defaults for these, as is explained in Section
2.11.2.

Next, we will see some of the important options available. Those that are only available in the advanced mode are

indicated as such using the icon. You will either need to toggle on the advanced options with the button or
search for the option using the Search box.

General settings

• General Options

– Show Welcome Dialog : Uncheck this to not show the welcome screen at application startup. You will

need to restart paraview to see the effect.

– Show Save State On Exit : When this is checked paraview will prompt you to save a state file when

you exit the application.

– Crash Recovery : When this is checked, paraview will intermittently save a backup state file as you
make changes in the visualization pipeline. If paraview crashes for some reason, then when you relaunch
paraview, it will provide you with a choice to load the backup state saved before the crash occurred. This
is not 100% reliable, but some users may find it useful to avoid losing their visualization state due to a

crash.

– Force Single Column Menus : On platforms that support multicolumn menus, ensure all menu items
are selectable on low-resolution screens.

• GUI Font

– Override Font : When checked, use a custom font size for the user interface. This overrides the system
default font size.

– Font Size : The size of the font to use for UI elements.

• View Options

– Default View Type : When paraview starts up, it creates Render View by default. You can use this
option to change the type of the view that is created by default, instead of the Render View . You can even

pick None if you don’t want to create any view by default.

• Properties Panel Options

– Auto Apply : When checked, the Properties panel will automatically apply any changes you make to
the properties without requiring you to click the Apply button. The same setting can also be toggled using

the button in the Main Controls toolbar.

– Auto Apply Active Only : This limits the auto-applying to the properties on the active source alone.

240 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.40: Settings dialog in paraview showing the General settings tab.

2.11. Customizing ParaView 241

ParaView Users Guide Documentation, Release 5.8.1

– Properties Panel Mode : This allows you to split the Properties panel into separate panels as de-

scribed in Section 2.1.2.

• Data Processing Options

– Auto Convert Properties : Several filters only work on one type of array, e.g., point data arrays or cell
data arrays. Before using such filters, you are expected to apply the Point Data To Cell Data or Cell
Data To Point Data filters. To avoid having to add these filters explicitly, you can check this checkbox.
When checked, ParaView will automatically convert data arrays as needed by filters, including converting
cell array to point arrays and vice-versa, as well as extracting a single component from a multi-component
array.

• Color/Opacity Map Range Options

– Transfer Function Reset Mode : This setting controls the initial settings for how ParaView will reset
the ranges for color and opacity maps (or transfer functions). This sets the initial value of the Automatic
Rescale Range Mode for newly created color/opacity maps (Section 2.2.2). This setting can be changed
on a per-color map basis after the color map has been created.

– Scalar Bar Mode : This settings controls how paraview manages showing the color legend (or scalar
bar) in Render View and similar views.

• Default Time Step Whenever a dataset with timesteps is opened, this setting controls how paraview will
update the current time shown by the application. You can choose between Leave current time unchanged,
if possible, Go to first timestep, and Go to last timestep.

• Animation

– Cache Geometry For Animation : This enables caching of geometry when playing animations to at-
tempt to speed up animation playback in a loop. When caching is enabled, data ranges reported by the

Information panel and others can be incorrect, since the pipeline may not have updated.

– Animation Geometry Cache Limit : When animation caching is enabled, this setting controls how
much geometry (in kilobytes) can be cached by any rank. As soon as a rank’s cache size reaches this limit,

ParaView will no longer cache the remaining timesteps.

– Animation Time Notation : Sets the display notation for the time in the annotation toolbar. Options
are Mixed , Scientific , and Fixed .

– Animation Time Precision : Sets the number of digits displayed in the time in the animation toolbar.

• Maximum Number of Data Representation Labels When a selection is labeled by data attributes this is
the maximum number of labels to use. When the number of points/cells to label is above this value then a subset
of this many will be labeled instead. Too many overlapping labels becomes illegible, so this is set to 100 by
default.

Camera settings

This tab allows you to control how you can interact in Render View and similar views. Basically, you are setting up
a mapping between each of the mouse buttons and keyboard modifiers, and the available interaction types including
Rotate, Pan, Zoom, etc. The dialog allows you to set the interaction mapping separately for 3D and 2D interaction
modes (see Section 1.4.4).

242 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.41: Settings dialog in paraview showing the Camera settings tab.

2.11. Customizing ParaView 243

ParaView Users Guide Documentation, Release 5.8.1

Render View settings

Refer to Section 2.6.11 and Section 2.6.11 for various options available on the Render View tab.

Color Palette

Fig. 2.42: Settings dialog in paraview showing the Color Palette settings tab.

The Color Palette tab (Fig. 2.42) allows you to change the colors in the active color palette. The tab lists the
available color categories Surface , Foreground , Edges , Background , Text , and Selection . You can manually
set colors to use for each of these categories or load one of the predefined palettes using the Load Palette option. To
understand color palettes , let’s look at an example.

Let’s start paraview and split the active view to create two Render View instances side by side. You may want to
start paraview with the -dr command line argument to stop any of your current settings from interfering with this
demo. Next, show Sphere as Wireframe in the view on the left, and show Cone as Surface in the view on the right.
Also, turn on Cube Axis for Cone . You will see something like Fig. 2.43 (top).

Now let’s say you want to generate an image for printing. Typically, for printing, you’d want the background color to
be white, while the wireframes and annotations to be colored black. To do that, one way is to go change each of the
colors for each each of the views, displays and cube-axes. You can imagine how tedious that will get especially with
larger pipelines. Alternatively, using the Settings dialog, change the active color palette to Print as shown in Fig.
2.42 and then click OK or Apply . The visualization will immediately change to something like Fig. 2.43 (bottom).

Essentially, ParaView allows you to link any color property to one of the color categories. When the color palette
is changed, any color property linked to a palette category will also be automatically updated to match the category

244 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Fig. 2.43: The effect of loading the Print color palette as the active palette. The top is the original visualization and
the bottom shows the result after loading the Print palette.

2.11. Customizing ParaView 245

ParaView Users Guide Documentation, Release 5.8.1

color. Fig. 2.44 shows how to link a color property to a color palette category in the Properties panel. Use the tiny
drop-down menu marker to make the menu pop up that shows the color palette categories. Select any one of them
to link that property with the category. The link is automatically severed if you manually change the color by simply
clicking on the button.

Fig. 2.44: Popup menu allows you to link a color property to a color palette category in the Properties panel.}

2.11.2 Custom default settings

The section describes how to specify custom default settings for the properties of sources, readers, filters, represen-
tations, and views. This can be used to specify, for example, the default background color for new views, whether a
gradient background should be used, the resolution of a sphere source, which data arrays to load from a particular file
format, and the default setting for almost any other object property.

The same custom defaults are used across all the ParaView executables. This means that custom defaults specified
in the paraview executable are also used as defaults in pvpython and pvbatch, which makes it easier to set up
a visualization with paraview and use pvpython or pvbatch to generate an animation from time-series data, for
example.

246 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Customizing defaults for properties

The Properties panel in paraview has three sections, Properties , Display , and View . Each section has two
buttons. These buttons are circled in red in Fig. 2.45. The button with the disk icon is used to save the current property
values in that section that have been applied with the Apply button. Property values that have been changed but not
applied with the Apply button will not be saved as custom default settings.

The button with the circular arrow (or reload icon) is used to restore any custom property settings for the object to
ParaView’s application defaults. Once you save the current property settings as defaults, those values will be treated
as the defaults from then on until you change them to another value or reset them. The saved defaults are written to a
configuration file so that they are available when you close and launch ParaView again.

Fig. 2.45: Buttons for saving and restoring default property values in the Properties panel.

You can undo your changes to the default property values by clicking on the reload button. This will reset the current
view property values to paraview’s application defaults. To fully restore paraview’s default values, you need to click
the save button again. If you don’t, the restored default values will be applied only to the current object, and new
instances of that object will have the custom default values that were saved the last time you clicked the save button.

2.11. Customizing ParaView 247

ParaView Users Guide Documentation, Release 5.8.1

Example: specifying a custom background color

Suppose you want to change the default background color in the Render View . To do this, scroll down to the View
section of the Properties panel and click on the combo box that shows the current background color. Select a new
color, and click OK . Next, scroll up to the View (Render View) section header and click on the disk button to the
right of the header. This will save the new background color as the default background color for new views. To see
this, click on the + sign next to the tab above the 3D view to create a new layout. Click on the Render View button. A
new render view will be created with the custom background color you just saved as default.

Configuring default settings with JSON

Custom default settings are stored in a text file in the JSON (JavaScript Object Notation) format. We recommend to
use the user interface in paraview to set most default values, but it is possible to set them by editing the JSON settings
file directly. It is always a good idea to make a backup copy of a settings file prior to manual editing.

The ParaView executables read from and write to a file named ParaView-UserSettings.json, which is lo-
cated in your home directory on your computer. On Windows, this file is located at %APPDATA%/ParaView/
ParaView-UserSettings.json, where the APPDATA environment variable is usually something like C:/Users/
USERNAME/AppData/Roaming, where USERNAME is your login name. On Unix-like systems, it is located under ~/
.config/ParaView/ParaView-UserSettings.json. This file will exist if you have made any default settings
changes through the user interface in the paraview executable. Once set, these default settings will be available in
subsequent versions of ParaView.

A simple example of a file that specifies custom default settings is shown below:

{
"sources" : {
"SphereSource" : {
"Radius" : 3.5,
"ThetaResolution" : 32

},
"CylinderSource" : {
"Radius" : 2

}
},
"views" : {
"RenderView" : {
"Background" : [0.0, 0.0, 0.0]

}
}

}

Note the hierarchical organization of the file. The first level of the hierarchy specifies the group to which the object
whose settings are being specified refers (“sources” in this example). The second level names the object whose settings
are being specified. Finally, the third level specifies the custom default settings themselves. Note that default values
can be set to literal numbers, strings, or arrays (denoted by comma-separated literals in square brackets).

The names of groups and objects come from the XML proxy definition files in ParaView’s source code in the
directory ParaView/ParaViewCore/ServerManager/SMApplication/Resources (ParaView\ParaViewCore\
ServerManager\SMApplication\Resources on Windows systems) . The group name is defined by the name at-
tribute in a ProxyGroup element. The object name comes from the name attribute in the Proxy element (or elements
of vtkSMProxy subclasses). The property names come from the name attribute in the *Property XML elements for
the object.

248 Chapter 2. Paraview Reference Manual

ParaView Users Guide Documentation, Release 5.8.1

Did you know?

The application-wide settings available in paraview through the Edit > Settings menu are also saved to this user
settings file. Hence, if you have changed the application settings, you will see some entries under a group named
“settings”.

Configuring site-wide default settings

In addition to individual custom default settings, ParaView offers a way to specify site-wide custom default settings
for a ParaView installation. These site-wide custom defaults must be defined in a JSON file with the same structure
as the user settings file. In fact, one way to create a site settings file is to set the custom defaults desired in paraview,
close the program, and then copy the user settings file to the site settings file. The site settings file must be named
ParaView-SiteSettings.json.

The ParaView executables will search for the site settings file in several locations. If you installed ParaView in
the directory INSTALL, then the ParaView executables will search for the site settings file in these directories in the
specified order:

• INSTALL/share/paraview-X.Y (INSTALLshareparaview-X.Y in Windows systems)

• INSTALL/lib (INSTALLlib in Windows systems)

• INSTALL

• INSTALL/.. (INSTALL/lib in Windows systems)

where X is ParaView’s major version number and Y is the minor version number. ParaView executables will search
these directories in the given order, reading in the first ParaView-SiteSettings.json file it finds. The conventional
location for this kind of configuration file is in the share directory (the first directory searched), so we recommend
placing the site settings file there.

Custom defaults in the user settings file take precedence over custom defaults in the site settings. If the same default
is specified in both the ParaView-SiteSettings.json file and ParaView-UserSettings.json file in a user’s
directory, the default specified in the ParaView-UserSettings.json file will be used. This is true for both object
property settings and application-settings set through the Edit > Settings menu.

To aid in debugging problems with the site settings file location, you can define an evironment variable named
PV_SETTINGS_DEBUG to something other than an empty string. This will turn on verbose output showing where the
ParaView executables are looking for the site settings file.

2.11. Customizing ParaView 249

ParaView Users Guide Documentation, Release 5.8.1

250 Chapter 2. Paraview Reference Manual

CHAPTER

THREE

REFERENCES

251

ParaView Users Guide Documentation, Release 5.8.1

252 Chapter 3. References

BIBLIOGRAPHY

[dt] The Matplotlib development team. Writing mathematical expressions - Matplotlib 3.0.2 documentation.
URL: https://matplotlib.org/tutorials/text/mathtext.html.

[SML96] William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The design and implementation
of an object-oriented toolkit for 3d graphics and visualization. In Proceedings of the 7th Conference on
Visualization '96, VIS '96, 93–ff. Los Alamitos, CA, USA, 1996. IEEE Computer Society Press. URL:
http://dl.acm.org/citation.cfm?id=244979.245018.

[BerkGeveci] Berk Geveci. A VTK pipeline primer (part 1). URL: https://blog.kitware.com/
a-vtk-pipeline-primer-part-1.

[KitwareInc] Kitware, Inc. VTK API documentation. URL: http://www.vtk.org/doc/nightly/html.

[PatMarion] Pat Marion. What is InterpolateScalarsBeforeMapping in VTK? URL: https://blog.kitware.com/
what-is-interpolatescalarsbeforemapping-in-vtk.

[ThePCommunity] The ParaView Community. Setting up a ParaView server. URL: http://www.paraview.org/Wiki/
Setting_up_a_ParaView_Server.

253

https://matplotlib.org/tutorials/text/mathtext.html
http://dl.acm.org/citation.cfm?id=244979.245018
https://blog.kitware.com/a-vtk-pipeline-primer-part-1
https://blog.kitware.com/a-vtk-pipeline-primer-part-1
http://www.vtk.org/doc/nightly/html
https://blog.kitware.com/what-is-interpolatescalarsbeforemapping-in-vtk
https://blog.kitware.com/what-is-interpolatescalarsbeforemapping-in-vtk
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

	Paraview User’s Guide
	Introduction to ParaView
	Introduction
	In this guide
	Getting help
	Getting the software

	Basics of visualization in ParaView
	ParaView executables
	paraview
	pvpython
	pvbatch
	pvserver
	pvdataserver and pvrenderserver

	Getting started with paraview
	paraview graphical user interface
	Understanding the visualization process
	Creating a source
	Changing properties
	Applying filters

	Getting started with pvpython
	pvpython scripting interface
	Understanding the visualization process
	Creating a source
	Changing properties
	Applying filters
	Alternative approach
	Updating the pipeline

	Scripting in paraview
	The Python Shell
	Tracing actions for scripting

	Loading Data
	Opening data files in paraview
	Dealing with unknown extensions
	Handling temporal file series
	Dealing with time
	Reopening previously opened files
	Opening files using command line options
	Common properties for readers
	Selecting data arrays

	Opening data files in pvpython
	Handling temporal file series
	Dealing with time
	Common properties on readers
	Selecting data arrays

	Reloading files

	Understanding Data
	VTK data model
	Mesh
	Attributes (fields, arrays)
	Uniform rectilinear grid (image data)
	Rectilinear grid
	Curvilinear grid (structured grid)
	AMR dataset
	Unstructured grid
	Polygonal grid (polydata)
	Table
	Multiblock dataset
	Multipiece dataset

	Getting data information in paraview
	The Information panel
	The Statistics Inspector panel

	Getting data information in pvpython

	Displaying data
	Multiple views
	Multiple views in paraview
	Multiple views in pvpython

	View properties
	View properties in paraview
	View properties in pvpython

	Display properties
	Display properties in paraview
	Display properties in pvpython

	Render View
	Understanding the rendering process
	Render View in paraview
	Creating a Render View
	Interactions
	View properties
	Display properties

	Render View in pvpython
	Creating a Render View
	Interactions
	View properties
	Display properties

	Line Chart View
	Understanding plotting
	Line Chart View in paraview
	Creating a Line Chart View
	Interactions
	View properties
	Display properties

	Line Chart View in pvpython

	Bar Chart View
	Box Chart View
	Plot Matrix View
	Interactions
	View properties
	Display properties

	Parallel Coordinates View
	Spreadsheet View
	Slice View
	Interactions
	Slice View in pvpython

	Python View
	Selecting data arrays to plot
	Plotting data in Python
	Set up a matplotlib Figure

	Comparative Views

	Filtering Data
	Understanding filters
	Creating filters in paraview
	Multiple input connections
	Multiple input ports
	Changing input connections

	Creating filters in pvpython
	Multiple input connections
	Multiple input ports
	Changing input connections

	Changing filter properties in paraview
	Changing filter properties in pvpython
	Filters for sub-setting data
	Clip
	Clip in paraview
	Clip in pvpython

	Slice
	Extract Subset
	Extract Subset in paraview

	Threshold
	Threshold in paraview
	Threshold in pvpython

	Iso Volume
	Extract Selection

	Filters for geometric manipulation
	Transform
	Transform in paraview
	Transform in pvpython
	Reflect
	Warp By Vector
	Warp By Scalar

	Filters for sampling
	Glyph
	Glyph With Custom Source
	Stream Tracer
	Stream Tracer With Custom Source
	Resample With Dataset
	Resample To Image
	Probe
	Plot over line

	Filters for attribute manipulation
	Calculator
	Python calculator
	Basic tutorial
	Accessing data
	Comparing multiple datasets
	Basic Operations
	Functions
	Trigonometric Functions

	Gradient
	Mesh Quality

	White-box filters
	Favorite filters
	Best practices
	Avoiding data explosion
	Culling data

	Selecting Data
	Understanding selection
	Creating selections using views
	Selecting in Render View
	Selecting in SpreadSheet View
	Selecting in Line Chart View

	Creating selections using the Find Data dialog
	Creating selections in Python
	Displaying selections
	Extracting selections
	Extract selection
	Plot selection over time

	Freezing selections

	Animation
	Animation View
	Animation View header
	Animating time-varying data
	Playing an animation
	Animating the camera
	Interpolate camera locations
	Orbit
	Follow path

	Saving Results
	Saving datasets
	Saving rendered results
	Saving screenshots
	Exporting scenes

	Saving animation
	Saving state
	Extractors
	Extractor Properties
	Saving Extracts

	Paraview Reference Manual
	Properties Panel
	Anatomy of the Properties panel
	Buttons
	Search box
	Properties

	Customizing the layout

	Color maps and transfer functions
	The basics
	Color mapping in paraview
	Color mapping in pvpython

	Editing the transfer functions in paraview
	Separate Color Map
	Mapping data
	Transfer function editor
	Color mapping parameters

	Editing the transfer functions in pvpython
	Color legend
	Color legend parameters
	Color legend in pvpython

	Annotations
	Annotations in pvpython

	Categorical colors
	Categorical Color: User Interface
	Categorical colors in pvpython

	Comparative visualization
	Setting up a comparative view
	Setting up a parameter study
	Adding annotations

	Programmable Filter
	Understanding the programmable modules
	Recipes for Programmable Source
	Reading a CSV file
	Reading a CSV file series
	Reading a CSV file with particles
	Reading binary 2D image
	Helix source

	Recipes for Programmable Filter
	Adding a new point/cell data array based on an input array
	Computing tetrahedra volume
	Labeling common points between two datasets

	Python Algorithm

	Using NumPy for processing data
	Teaser
	Understanding the dataset_adapter module
	Dataset attributes

	Working with arrays
	The array API
	Algorithms

	Handling composite datasets

	Remote and parallel visualization
	Understanding remote processing
	Remote visualization in paraview
	Starting a remote server
	Configuring a server connection
	Connect to the remote server
	Managing multiple clients
	Setting up a client/server visualization pipeline

	Remote visualization in pvpython
	Reverse connections
	Understanding parallel processing
	Ghost levels
	Data partitioning
	D3 Filter

	Ghost Cells Generator
	ParaView architecture
	Parallel processing in paraview and pvpython
	Using pvbatch
	Fetching data to the client
	Rendering
	Basic Rendering Settings
	Basic Parallel Rendering
	Image Level of Detail
	Parallel Render Parameters
	Parameters for Large Data

	Memory Inspector
	User interface and layout
	Advanced debugging features
	Remote commands
	Stack trace signal handler

	Compilation and installation considerations

	Multiblock Inspector
	Annotations
	Annotation sources
	Text source
	Annotate Time source

	Annotation filters
	Annotate Attribute Data filter
	Annotate Global Data filter
	Annotate Time Filter
	Environment Annotation filter
	Python Annotation filter

	Axes Grid
	The basics
	Use cases
	Axes Grid in pvpython

	Customizing ParaView
	Settings
	General settings
	Camera settings
	Render View settings
	Color Palette

	Custom default settings
	Customizing defaults for properties
	Example: specifying a custom background color
	Configuring default settings with JSON
	Configuring site-wide default settings

	References
	Bibliography

